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Abstract. A binary relation on a finite set is called a Hall relation if it
contains a permutation of the set. Under the usual relational product,
Hall relations form a semigroup which is known to be a block-group, that
is, a semigroup with at most one idempotent in each R-class and each
L -class. Here we show that in a certain sense, the converse is true: every
finite block-group divides a semigroup of Hall relations on a finite set.
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1 Background and Motivation: Straubing’s Theorem

The result that we are going to present is inspired by Straubing’s representation
theorem for J -trivial monoids [19]. Straubing’s theorem involves three notions:
J -trivial semigroups, monoids of reflexive relations, and semigroup division.
For the reader’s convenience, we recall their definitions.

Given a semigroup S, we denote by S1 the least monoid containing S, that
is, S1 := S if S has an identity element and S1 := S ∪ {1} if S has no identity
element; in the latter case the multiplication in S is extended to S1 in a unique
way such that the fresh symbol 1 becomes the identity element in S1. Green [6]
defined five important equivalencies on every semigroup S, collectively referred
to as Green’s relations, of which we meet the following three in this note:

xR y ⇔ xS1 = yS1, i.e., x and y generate the same right ideal;
xL y ⇔ S1x = S1y, i.e., x and y generate the same left ideal;
xJ y ⇔ S1xS1 = S1yS1, i.e., x and y generate the same ideal.

Basic information about R, L , and J can be found in the early chapters of
any general semigroup theory text such as, e.g., [5,10], but actually this note
uses only the above definitions of these three relations.

⋆ Supported by the Ministry of Science and Higher Education of the Russian Federa-
tion (Ural Mathematical Center project No. 075-02-2020-1537/1)

http://arxiv.org/abs/2009.05627v2
http://csseminar.kmath.ru/volkov/


2 Azza M. Gaysin, Mikhail V. Volkov

A semigroup S is said to be J -trivial if the relation J on S coincides with
the equality relation ∆S on S. In other words, this means that the following
implication holds for all x, y ∈ S:

S1xS1 = S1yS1 → x = y.

Let X be a set. Recall that binary relations on X are multiplied as follows:
for ρ, σ ⊆ X ×X , their product is set to be the relation

ρσ := {(x, y) ∈ X ×X | ∃z ∈ X (x, z) ∈ ρ & (z, y) ∈ σ}.

This multiplication is associative and ∆X , the equality relation on X , serves as
the identity element for it. Thus, the binary relations on X constitute a monoid.
Also, it is easy to check that the multiplication is compatible with inclusions
between relations: if ρ ⊆ ρ′ and σ ⊆ σ′, then ρσ ⊆ ρ′σ′.

A binary relation ρ onX is reflexive if ρ contains∆X . The above observations
immediately imply that the reflexive relations on X form a submonoid in the
monoid of all binary relations on X . Let Rn denote the monoid of all reflexive
binary relations on a set with n elements. This monoid can be conveniently
thought of as a submonoid of the monoid of all n × n matrices (with the usual
matrix multiplication) over the Boolean semiring {0, 1}, with the operations +
and · on {0, 1} being defined by the rules:

0 · 0 = 0 · 1 = 1 · 0 = 0 + 0 = 0, 1 · 1 = 1 + 0 = 0 + 1 = 1 + 1 = 1.

Namely, Rn can be identified with the submonoid consisting of matrices in which
all diagonal entries are 1.

Finally, a semigroup S is said to divide another semigroup T if S is a homo-
morphic image of a subsemigroup in T . Now we are in a position to formulate
Straubing’s theorem.

Theorem 1 (Straubing [19]). A finite semigroup S is J -trivial if and only

if S divides the monoid Rn for some n.

Remark 1. In [19], the above result is stated for S being a monoid; this makes
no essential difference since S is J -trivial if and only if so is S1.

Theorem 1 looks quite innocent as it is stated in purely semigroup-theoretic
terms and very much resembles textbook representation results such as the
Cayley-type representation of arbitrary semigroups by transformations or bi-
nary relations. However, no direct semigroup-theoretic proof of Theorem 1 is
known. The proof in [19] crucially depends on Simon’s theorem [15,16], a deep
combinatorial result in the theory of recognizable languages. Moreover, it can
be shown relatively easily that Theorem 1 and Simon’s theorem are equivalent,
and therefore, a direct proof of the former would provide a new algebraic proof
of the latter. In the literature, there are many proofs of Simon’s theorem, based
of different techniques, but none of the proofs are purely algebraic.
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In the present note, we provide a representation by binary relations for an-
other, larger class of finite semigroups, namely, the class of all finite block-groups.
We introduce and briefly discuss this class in Section 2, while in Section 3 we
present a family {Hn} of monoids of binary relations consisting of so-called Hall
relations. Our main result, which is stated and proved in Section 4, shows that
the family {Hn} plays for block-groups precisely the same role as the family
{Rn} plays for J -trivial semigroups.

2 Block-Groups and Power Semigroups of Groups

Recall that an element e of a semigroup S is said to be an idempotent if e2 = e.
A block-group is a finite semigroup with at most one idempotent in each R-class
and each L -class. This definition can be expressed by the following implications:

ef = e2 = e & fe = f2 = f → e = f, (1)

ef = f2 = f & fe = e2 = e → e = f. (2)

Indeed, (1) and respectively (2) express the facts that any R-related (respec-
tively, L -related) idempotents coincide.

We refer the reader to Pin’s enthusiastic survey [14] for an explanation of the
name “block-group”. The survey presents also remarkable and profound connec-
tions between block-groups and the theory of recognizable languages, especially
its topological aspects. An unexpected connection of block-groups to computa-
tional complexity theory has been established in [3].

While the “external” connections just mentioned are of definite importance
and interest, the present note is entirely “internal” with respect to the algebraic
theory of block-groups. We need two results of this theory. The first one, due to
Margolis and Pin [12], relates block-groups to J -trivial semigroups.

Proposition 1 ([12], Proposition 2.3). A finite semigroup S is a block-group

if and only if the idempotents of S generate a J -trivial subsemigroup in S.

Remark 2. In [12], the above result is stated for S being a monoid; this makes
no essential difference since S is a block-group if and only if so is S1. The same
remark applies also to Theorem 2 below, which also was originally stated for the
case of monoids.

Given a semigroup S, we denote by P(S) the set of all its non-empty subsets.
One introduces an associative multiplication on P(S) as follows: the product of
subsets A,B ∈ P(S) is the subset

AB := {ab | a ∈ A, b ∈ B}.

Then P(S) becomes a semigroup which is called the power semigroup of S.
A jewel of the theory of block-groups is their characterization in terms of

power semigroups of groups. This deep and difficult result is due to Henckell
and Rhodes [9], see also [8] for a detailed explanation and [20,1] for modern and
shorter (but still complicated) proofs.
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Theorem 2. A finite semigroup S is a block-group if and only if S divides the

power semigroup of some finite group.

Here we make a comment similar to that made after Theorem 1: even though
the formulation of Theorem 2 is purely semigroup-theoretic, all its proofs in the
literature employ tools from outside algebra.

3 Hall relations

A binary relation ρ ⊆ X×X on a finite setX is called a Hall relation if ρ contains
a permutation ofX . Here we treat permutations as binary relations, that is, given
a permutation π : X → X , we identify it with the relation {(x, xπ) | x ∈ X}.

The name “Hall relation” was coined by Schwarz [17,18] with the reference
to the classic marriage theorem by Hall [7]. Indeed, Hall’s theorem deals with
perfect matchings in bipartite graphs, and if one represents binary relations on a
finite set as bipartite graphs, Hall relations are precisely those whose graphs ad-
mit a perfect matching. In the representation of binary relations as matrices over
the Boolean semiring, Hall relations correspond to matrices with permanent 1.

The product of two permutations considered as relations on X coincides
with their usual product in the group of all permutations on X . If ρ, ρ′ are Hall
relations and π, π′ are permutations such that π ⊆ ρ and π′ ⊆ ρ′, the product
ρρ′ contains the permutation ππ′ whence ρρ′ is a Hall relation again. Since ∆X ,
the equality relation on X , is a Hall relation, the Hall relations on X form
a submonoid in the monoid of all binary relations on X . Let Hn denote the
monoid of all Hall relations on the set Xn := {1, 2, . . . , n}. Clearly, Hn contains
both the monoid Rn of all reflexive relations on Xn and the group Sn of all
permutations on Xn.

The monoid Hn turns out to be a block-group. This property of Hn can be
extracted from results announced by Ki Hang Kim [4]1. The argument outlined
in [4] is of counting nature: the author exhibits a recursive formula for the number
of idempotents in Hn [4, Theorem 15], and then he claims that the number
coincides with both the number of L -classes that contain idempotents and the
number of R-classes that contain idempotents [4, Corollary 17]. The research
announcement [4] contained no proofs, nor we found any proofs of claims made
therein in later publications that dealt with monoids of Hall relations. Therefore,
we include here a short counting-free argument.

Proposition 2. The monoid Hn is a block-group.

Proof. Let ρ be an idempotent from Hn and π a permutation contained in ρ.
There exists a positive integer k such that πk = ∆Xn

. Since ρ2 = ρ, we have
ρ = ρk ⊇ πk, whence ρ ⊇ ∆Xn

. Thus, ρ is reflexive, and we have shown that
every idempotent of Hn lies in Rn. The latter monoid is J -trivial, and hence,
Hn is a block-group by Proposition 1. ⊓⊔

1 This paper was published under the name Kim Ki-hang Butler; see the biography
of Ki Hang Kim [2] for an explanation.



Block-groups and Hall relations 5

4 Representation Theorem

Theorem 3. A finite semigroup S is a block-group if and only if S divides the

monoid Hn for some n.

Proof. The class of all block-groups is known to be closed under division (see,
e.g., [12]). Therefore the “if” part immediately follows from Proposition 2.

For the “only if” part, we employ Theorem 2. Choose a finite group G such
that S divides P(G) and let n := |G|. It is sufficient to show that the semigroup
P(G) embeds into the monoid Hn. In order to simplify notation, we identify
G and Xn as sets. Now, for each non-empty subset A ∈ P(G), define a binary
relation ρA as follows:

ρA := {(g, h) ∈ G×G | g−1h ∈ A}.

Fix an element a ∈ A. By the definition, ρA contains all pairs (g, ga), where g

runs over G. As the relation {(g, ga) | g ∈ G} is a permutation of G, we see that
ρA is a Hall relation. Thus, the map f : A 7→ ρA sends P(G) into Hn.

We aim to show that f : P(G) → Hn is an embedding of semigroups. To see
that f is one-to-one, take any two different subsets A,B ∈ P(G). Without any
loss, we may assume that A * B. If a ∈ A \ B, the pair (e, a), where e is the
identity element of the group G, belongs to ρA but not to ρB. Thus, ρA 6= ρB.

It remains to verify that f is a homomorphism, that is, ρAρB = ρAB for
arbitrary subsets A,B ∈ P(G). If (x, y) ∈ ρAρB , there must exist an element z
such that (x, z) ∈ ρA and (z, y) ∈ ρB. By the definition, we have x−1z ∈ A and
z−1y ∈ B, whence x−1y = x−1z · z−1y ∈ AB. We see that (x, y) ∈ ρAB. Thus,
ρAρB ⊆ ρAB.

To prove the opposite inclusion, take (g, h) ∈ ρAB. Then g−1h ∈ AB, that
is, g−1h = ab for some a ∈ A and b ∈ B. We see that g−1hb−1 = a, whence
(g, hb−1) ∈ ρA, while (hb−1)−1h = b, whence (hb−1, h) ∈ ρB. Therefore, we get
(g, h) ∈ ρAρB, as required. ⊓⊔

As the above proof shows, Theorem 3 is rather a straightforward conse-
quence of Henckell and Rhodes’s theorem (Theorem 2). After the formulation
of Straubing’s theorem (Theorem 1) in Section 1, we said that it is more than
a consequence of Simon’s theorem: Theorem 1 is in fact equivalent to Simon’s
theorem whence a direct algebraic proof of the former would provide a new alge-
braic proof of the latter. Could the same be said about the relationship between
Theorem 3 and Henckell and Rhodes’s theorem?

To address this question, we need the concept of the semidirect product of a
monoid with a group. Let M be a monoid, G a group, AutM the automorphism
group of M , and α : G → AutM a group homomorphism. For m ∈ M and
g ∈ G we write gm for the image of m under the automorphism gα (so that
we assume that automorphisms act on the left). The semidirect product M ⋊G

with respect to α is the set M ×G equipped with the following multiplication:
for all m,m′ ∈ M , g, g′ ∈ G,

(m, g)(m′, g′) := (m(gm′), gg′) .
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The multiplication is easily seen to be associative so that M ⋊G is a semigroup.
The following result was first proved by Margolis and Pin [12, Propositions 3.6

and 3.7] by language-theoretical tools. Pin [14] asked for its purely semigroup-
theoretic proof. Such a proof was then published by Auinger and Steinberg [1].

Proposition 3. Every semidirect product of a finite J -trivial monoid with a

finite group divides the power semigroup of some finite group.

Now we register a further property of monoids of Hall relations. As men-
tioned, the monoid Hn contains both the monoid Rn and the group Sn. Observe
that Sn acts on Rn by conjugation since the relation πρπ−1 is reflexive for every
ρ ∈ Rn and every π ∈ Sn. This defines a group homomorphism Sn → AutRn

that gives rise to the semidirect product Rn ⋊ Sn.

Proposition 4. The monoid Hn is a homomorphic image of the semidirect

product Rn ⋊ Sn.

Proof. Define a map f on Rn⋊Sn by (ρ, π)f := ρπ for every pair (ρ, π) ∈ Rn×Sn.
Since ρ contains the equality relation, the product ρπ contains the permutation π

whence ρπ is a Hall relation. Thus, the map f sends Rn ⋊ Sn into Hn.
We aim to show that f : Rn⋊Sn → Hn is an onto homomorphism. If σ ∈ Hn

is an arbitrary Hall relation, take a permutation τ such that τ ⊆ σ and consider
the relation στ−1. Clearly, στ−1 is reflexive and

(

στ−1, τ
)

f = στ−1τ = σ. Thus,
the map f is surjective.

It remains to verify that f is a homomorphism. Taking any ρ, ρ′ ∈ Rn and
any π, π′ ∈ Sn, we see that

((ρ, π)(ρ′, π′)) f =
(

(ρ(πρ′π−1), ππ′)
)

f by definition of semidirect product

= ρ(πρ′π−1)ππ′ by definition of the map f

= ρπρ′π′

= ((ρ, π)) f · (ρ′, π′)) f by definition of the map f . ⊓⊔

Now we can easily deduce the “only if” of Theorem 2 from Theorem 3. (The
“if” part of Theorem 2 is immediately ensured by the fact that power semigroups
of finite groups are block-groups—see, e.g., [13, Proposition 2.4] for this fact.)
Let S be a block-group. Combining Theorem 3 and Proposition 4, we see that
S divides a semidirect product of a finite J -trivial monoid with a finite group,
while Proposition 3 tells us that any such product divides the power semigroup
of another finite group. The division relation is transitive, whence S divides the
power semigroup of the latter group.

As mentioned, there exists a purely semigroup-theoretic proof of Proposi-
tion 3. Therefore, a direct algebraic proof of Theorem 3 would provide a new
algebraic proof of Henckell and Rhodes’s theorem. Thus, the relationship be-
tween our main result and Henckell and Rhodes’s theorem is to a large extent
parallel to that between Straubing’s and Simon’s theorems.

We conclude with reminding a longstanding open question concerning Hall
relations [11, Problem 13]: what is the cardinality of the monoid Hn?
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