Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Azza Gaysin

Weighted Clones

Department of Algebra

Supervisor of the master thesis: doc. Mgr. Libor Barto, Ph.D.
Study programme: Mathematics

Study branch: Mathematical Structures

Prague 2017



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In ........ date ............ signature of the author



Title: Weighted Clones

Author: Azza Gaysin

Department: Department of Algebra

Supervisor: doc. Mgr. Libor Barto, Ph.D.

Abstract: In this thesis we fully describe the structure of all binary parts of weigh-
ted clones over the Boolean clones generated by one of the semilattice operations
and one or two of the constant operations. We also give a complete description

of all atomic and maximal weighted clones over these clones.

Keywords: Relational clones, VCSP, Weighted clones

Néazev prace: Vazené klony

Autor: Azza Gaysin

Katedra: Katedra algebry

Vedouci diplomové praci: doc. Mgr. Libor Barto, Ph.D.

Abstract: V této prace kompletné popisujeme strukturu vsech binarnich c¢asti
vazenych klonti nad booleovskymi klony generovanymi jednou z polosvazovych
operaci a jednou nebo dvéma konstantnimi operacemi. Rovnéz poskytujeme tplny

popis vsech atomickych a maximalnych vazenych klontt nad témito klony.

Klicova slova: Relac¢ni klony, Vazené klony, VCSP

i



I would like to thank my supervisor, Libor Barto, for hours and hours of consul-
tation and inspiration that he gives his students.

As well, I would like to thank my parents for their continued support throu-
ghout my life.

And finally, I'm very grateful to all people from Charles University, especially
from the Faculty of Mathematics and Physics, for the knowledge and opportuni-
ties that they have provided me.

1ii



Contents

2 Weighted clones|
2.1  VCSP and Weighted relational clones| . . . . . . .. ... ... ..
[2.2  Weighted clones| . . . . . ... ... ... o000
[2.3  Properties of weightings| . . . . . . . ... ... ... ... ...

[3 Structure of weighted clones|
[3.1  Binary weighted clones| . . . . . . . .. ... ... ...
[3.2  Binary weighted clones over the clone with one constant| . . . . .
[3.2.1 Binary weighted clones over the clone AFy| . . . . . . . ..
[3.2.2  Binary weighted clones over the clone APy . . . . . . . ..
[3.3  Binary weighted clones over the clone AFy,|. . . . . . .. ... ..

Conclusion

[Bibliography|

[List of Figures|

ot W W

51

52

53



Introduction

The theory of CSP provides an universal apparatus and a simple formal fra-
mework for the representation and solution of a wide range of natural combina-
torial problems.

The constraint satisfaction problem (CSP) is a computational problem that is
in finding an assignment of values to a set of variables, such that this assignment
satisfies some specified feasibility conditions. Feasibility conditions of CSP can
be parametrized by a set of relations on a suitable domain, so called constraint
language. It turns out (see [I]) that instead of vast variety of languages, one can
consider CSPs over larger sets of relations, those containing the binary equality
relation and closed under primitive positive definitions (so called relational clo-
nes), since such a closure does not increase the complexity of CSP problems.
Moreover, it was proved by Geiger [2] and V.G. Bondarchuk et al. [3] that there
is a one-to-one correspondence between relational clones and sets of operations
called function clones, or simply clones, so one can represent and describe any
relational clone using operations. This alternative way is very useful, since, for
example, all the clones on the Boolean (i.e., two-element) domain are known from
the work of E. Post [4].

The generalization of CSP problem, that includes optimization problem, is
valued constraint satisfaction problem (VSCP) [5], D. A. Cohen, M. C. Cooper,
P. Creed, P. G. Jeavons and S. Zivny [6] introduced the concepts of weighted
relational clones and weighted clones, that for VCSP play the same role as relati-
onal clones and clones for CSP, and proved a one-to-one correspondence between
these structures.

Although the complexity of VCSP is now fully understood [7], the structure
of weighted clones on the Boolean domain is far from being well understood. The
first systematic steps in this direction were made by Jiff Vancura in his thesis [§].
He presented a complete classification of weighted clones over all minimal clones
of the Post lattice.

In this thesis we continue in the effort to characterize weighted clones over the
clones of the Post lattice. We introduce a concept of binary weighted clones and
give a full description of the binary weighted clones over the clones generated by
one of the semilattice operations and one or two of the constant operations. To
obtain this result we employ a correspondence between binary weighted clones
and certain convex sets in a 2-dimensional or 3-dimensional vector space over
the rationals. We also give a complete classification of all atomic and maximal
weighted clones over these clones.



1. Clones

In this chapter we describe the constraint satisfaction problem (CSP) and explain
the correspondence between such problems and clones. Some definitions, examples
and results are adapted from [I], [8], [9] and [10].

1.1 CSP and Relational clones

Notation 1. For any set D and any natural number n, we denote by D™ the set
of all n-tuples of elements of D. Any subset of D" is called an n-ary relation over
D. The set of all finitary relations over D is denoted by Rp.

Definition 1 (CSP). An instance of the constraint satisfaction problem (CSP)
is a triple P = (V, D, C) with

e |/ a nonempty, finite set of variables,
e D a nonempty, finite domain, i.e. set of values,
e (' a finite set of constraints, where each constraint is a pair ¢ = (x, R) with

— x a n-tuple of distinct variables, called the scope of ¢, and

— R an n-ary relation on D, called the constraint relation of c.

The decision problem for CSP asks whether there exists a solution to P, that is,
a function f : V' — D such that, for each constraint ¢ = (z, R) € C, the tuple
f(z) belongs to R.

In a fixed-template CSP we fix a domain and a set of allowed constraints.

Definition 2. A constraint language I' is a set of relations on a finite set D. The
constraint satisfaction problem over I', denoted CSP(I"), is the subclass of the
CSP defined by the property that any constraint relation in any instance must
belong to I'.

Various combinatorial problems can be expressed in terms of CSP over a
suitable language.

Example 1 (3SAT). An instance of the standard NP-complete problem [11)],
3SAT, is a Boolean formula in conjunctive normal form with exactly three literals
per clause. For example, the formula,

§b == (1’1 V ) V .173) A (_|ZE4 V Ty V _h’El) A (_h'El V XLy V _|ZL'3)

is a satisfiable instance of 3SAT. (Any assignment making x; and x4 false, satis-
fies ¢.) 3SAT is equivalent to CSP(T'ssar), where Dssar = {0,1} and T'sgar =
{Sijk 14,7,k € {0,1}}, where Sy = {0, 1} \ {(i, 4, k)}.

For example, the above formula ¢ corresponds to the following instance of

CSP(T3sar)

7) = (V = {I1,$2,$3,I4,I5},D = {0, 1},
C= {((371, 91?27353), 5010)7 ((334, s, 1‘1)7 5101), ((1'1,354,373), 5111)})-

3



Example 2 (Graph Unreachability). An instance of Graph Unreachability con-
sists of a graph G = (V, E) and a pair of vertices, v,w € V. The question is
whether there is no path in G from v to w.

Graph Unreachability can be expressed as the constraint satisfaction problem
instance CSP(T'qy ), where Dy = {0,1} and T'qu = {=10,13, Co, C1}, ={0,1} de-

notes the equality relation over the set {0,1} and Cy, Cy are constants.

In order to analyze the complexity of CSP instead of the constraint language
it is more convenient to use the relational clones, since they considerably reduces
the variety of languages to be studied. Relational clones are defined as follows.

Definition 3 (Relational clone). A set of relations I' C Rp is a relational clone
if it

1. contains the binary equality relation,

2. is closed under primitive-positive definitions, i.e. relations defined by relati-
ons from I', conjunction and existential quantifier are in I'.

Example 3. Let I' be a relational clone and Ry, Ry be a binary and a ternary
relations from I'. Then the ternary relation

S(x1, 22, x4) = (Fzg) (Ri(z1, 23) A R0, 23, 24) N (21 = 24))
is also in T [§)].

Since the set of all relations Rp is a relational clone and intersection of any
set of clones is a clone we can define closure operator.

Definition 4 (Closure operator). For any set of relations I' C Rp we define
RelClone(I") to be smallest relational clone that contains I'.

It is obvious that we can get the relational clone RelClone(I") from I' by adding
to I' all relations that one can define with relations in I' using pp-definitions.

Example 4. Consider the Boolean constraint language I' = {Ry, Ry}, where
Ry = {(0,1),(1,0),(1,1)} and Ry = {(0,0),(0,1),(1,0)}. It is straightforward
to check that every binary Boolean relation can be expressed by a pp-formula
involving Ry and Ry. For example, the relation R3 = {(0,0),(1,0),(1,1)} can
be expressed by the formula Ry = (3y)(Ri(x,y) A Ra(y, 2)). Hence the relational
clone generated by T, RelClone(T"), includes all 16 binary Boolean relations. In
fact it can be shown that RelClone(T") consists of precisely those Boolean relations
(of any arity) that can be expressed as a conjunction of unary or binary Boolean
relations [9].

The following theorem shows why we can consider relational clones instead of
constraint languages.

Theorem 1. Let I' and X be finite constraint languages with the same finite
domain such that RelClone(I') = RelClone(X). Then CSP(T') and CSP(X) are
polynomial-time equivalent.

In other words, the replacing languages with relational clones does not increase
the complexity of problem.



1.2 Clones

For many relational clones it is very hard to describe their structure in terms of
relations. However, it turns out that one can represent and describe any relational
clone using operations.

Definition 5. For any domain D and any natural number n a mapping f : D"
D is called an n-ary operation on D.

Notation 2. For any finite domain D we denote by Op the set of all operations
over D. For a natural number k we denote by O% C Op the set of all k-ary
operations over D.

Notation 3. Leti < k be a natural number. We denote by 7¥ the k-ary projection
on the i-th coordinate, i.e., 7 (x1, ..., x) = ;. When there can arise no confusion,
we will denote i-th projection simply by ;.

Notation 4. For any k-ary operation f € O% and any m-ary operations g, ..., gi
€ O we denote by flg1, ..., gr] € O the superposition of f with g1, ..., gk, i.€.:

flars o grl(@1, ooy xm) = fg1(x1, oo Tn)y ooey G (T2, ooy T) ).

Definition 6 (Clone). A set of operation O C Op is a clone if it contains all
projections and closed under superposition, i.e. for a k-ary operation f € O and
m-ary operations g, ..., gm € O the superposition f[g1,...,gx) is in O as well.

Example 5. The set of all operations Op over any finite domain D is a clone.
Intersection of any set of clones is a clone again.

Definition 7 (Closure operator). For any set of operation O C Op we define
Clone(0O) to be the smallest clone containing O.

Example 6. Let D = {0,1}, O = {A}, then

Clone(0) = {f s(ay, .y ay) N ai}
.n},neNt

i€l 0AIC{1,..

Definition 8 (k-ary part of a clone). Let ¢ C Op be a clone and let & be a
natural number, we define the k-ary part C* of C as a set of all k-ary operations

in C.

Example 7. Let D = {0,1} and UD = Clone({—}), i.e. UD is a clone generated
by the unary negation operation. The k-ary part of this clone contains exactly 2k
operations: k projections 7¥ i = 1,....,k and k negations of projections, —=F i =

1, .., k.

We now define the fundamental correspondence between relations and ope-
rations.

Notation 5. For any domain D, for any k-ary operation f and any collection
of n-tuples ay, ..., a € D", where a; = (ay, ..., an;) we denote by f(ay, ..., ax) the
n-tuple (f(ai1, ..., a1x), -, f(Qn1y ey Qnk))-



Definition 9 (Polymorphism). We say that k-ary operation f € Op preservers
an n-ary relation R € Rp (or f is a polymorphism of R, or R is invariant under
f)if f(ay,...,ax) € R for all choices of ay,...,a; € R.

For any given sets I' C Rp and O C Op let

Pol(I") ={f € Op| f preserves each relation from I'},
Inv(0) = {R € Rp| R is invariant under each operation from O}.

The operators Pol and Inv form a Galois correspondence between Rp and
Op. Actually, relational clones and clones are exactly the closed sets given by
this Galois correspondence. The following theorem allows us to work with clones
instead of relational clones [2], [3].

Theorem 2 (Galois Connection for Constraint Languages).
1. For any finite D, and any I" € Rp, Inv(Pol(")) = RelClone(T).
2. For any finite D and any O C Op, Pol(Inv(0)) = Clone(O).



2. Weighted clones

In this chapter we describe a generalization of CSP, valued constraint satisfaction
problem (VCSP), that includes optimization problem. Then we define weighted
relational clones and weighted clones, which can be used to determine complexity
of VCSP problem in the same way as relational clones and clones are used for
CSP problem. Some definitions, examples and results are adapted from [g], [10]
and [5].

2.1 VCSP and Weighted relational clones

Definition 10 (Weighted relation). For any domain D and any natural number
n a function R : D" — QU {oo} is called cost function, or weighted relation on
D of arity n.

Weighted relation associates a rational weight with each of the tuples in some
subset of D™. We denote by wRp the set of all weighted relations on D.

Definition 11 (VCSP). An instance of the valued constraint satisfaction problem
(VCSP) is a triple P = (V, D, C') with

e I/ a nonempty, finite set of variables,
e D a nonempty, finite domain,

e (' a finite set of constraints, where each element of C' is a pair ¢ = (z, R)
with

— x a n-tuple of distinct variables, called the scope of ¢, and

— R an n-ary weighted relation on D called a constraint relation.

An assignment for P is a mapping s : V +— D. The cost of an assignment s,
denoted Costp(s), is given by the sum of the weights assigned to the restrictions
of s onto each constraint scope, that is,

Costp(s) == > R(s(xy), ..., s(xy)).

((z1,...,zn),R)EC

If R(s(x1),...,s(xy,)) is undefined for some = = (x1, ..., z,) (i.e. if the Costp(s) is
+00), then the assignment s is said to be infeasible and Costp(s) is undefined.
A solution to P is a feasible assignment with minimal cost.

Definition 12. A valued constraint language T is a set of weighted relations on a
finite set D. The valued constraint satisfaction problem over T', denoted VCSP(T"),
is the subclass of the VCSP defined by the property that any constraint relation
in any instance must belong to I'.

Example 8 (Minimum Vertex Cover). The Minimum Vertex Cover problem asks
for a minimum size set W of vertices in a given graph G = (V, E) such that each
edge in E has at least one endpoint in W. Let D = {0,1}. We define



Ru(z,v) ::{ 400, if xt=y=0,

0, otherwise
] 0, if x=0,
Ry(w) = { 1, if 140
We denote by I'yiin—ve the constraint language {Ry, Ro}. A minimum vertex
cover in a graph G with set of vertices V. = {x1,...,x,} corresponds to the

set of wvertices assigned the value 1 in some minimum cost assignment to the
VCSP(T yin—ve) instance defined by

Costg(s) == > Ro(z;)+ > Rilzizy).

z, €V (.ri,Zj)EE

The binary constraints ensure that in any minimal cost assignment at least one
endpoint of each edge belongs to the vertex cover.

Note that if we restrict wRp to only weighted relations with values {0, +oc},
we get CSP problems. Thus, VCSP includes CSP and is actually a generalization.
Now we define a weighted relational clone.

Definition 13 (Weighted relational clone). A set of weighted relations I' C wRp
is a weighted relational clone if it

1. contains the weighted equality relation (weighted binary relation =, that
is 0 if the two values are equal and oo otherwise),

2. is closed under nonnegative multiplication and addition of constant,
3. is closed under sum of relations and minimization over arbitrary arguments.
We say that valued language I is closed under expressibility.

Example 9. Let Ry, Ry be a binary and a ternary weighted relations from a
weighted relational clone T, let ay,as be nonnegative rational numbers and let b
be a rational number. Then the weighted ternary relation

S(x1, 29, 24) = 113131311(@131(%1, x3) + asRo(x9, x3,24) + (11 =4 x4) + D)

is also in T [§].

Definition 14 (Closure operator). For any set of relations I' C wRp we define
wRelClone(I') to be the smallest weighted relational clone that contains I'.

Again, as in case with constraint languages and relational clones, to investigate
a complexity of VCSP problem over valued constraint language it is sufficient to
consider weighted relational clone generated by this language.

Theorem 3. Let I' and ¥ be finite valued constraint language with the same
finite domain such that wRelClone(I') = wRelClone(X). Then VCSP(T') and
VCSP(X) are polynomial-time equivalent.



2.2 Weighted clones

Definition 15 (Weighting). We define a k-ary weighting of a clone C to be a
function w : C* — Q such that w(f) < 0 only if f is projection and

> wif) =0 (2.1)

feck
We call the value w(f) the weight of w on f.

We denote by W ¢ the set of all weightings of C' and by W%, the set of k-ary
weightings of C'.

Remark 1. Since a k-ary weighting w is simply a rational-valued function that
satisfies certain inequalities, scaling w by nonnegative rationals and summing w
with another k-ary weighting 7 of the same clone gives a new weighting of that
clone.

Remark 2 (Weighting as a linear combination). We will view a k-ary weighting
w of a clone C' as a linear combination of k-ary operations f, ..., f,, of that clone:

w=w(fi)fi tw(fe)fa+ ... +w(fn)fn

for brevity, we will sometimes omit operations with zero weight in such combi-
nation.

Remark 3 (Improper and proper weighting). We will also work with functions
w : C* — Q that satisfy the zero sum condition but assign negative weight to
non-projections. We call these functions improper weightings and in this context
we call weightings proper weightings.

The notion of superposition for operations can be extended to weightings in
a natural way as follows.

Definition 16. For any clone C, any weighting w € W%, and any gi,...,gx €
C™, we define the superposition of w and ¢, ..., gx to be the (possibly improper)
weighting w(gy, ..., gx] € W& defined by:

w[glv"'7gk]<f/) = Z w(f)

feck
F'=Fflg1,gx]

If the result of a superposition is a proper weighting, then we call this superpo-
sition a proper superposition.

Note that the superposition of a projection with projections is again a pro-
jection. Thus, the superposition with projections only is always proper, since the
negative weights from projections stay on projections.

Example 10. Let D = {0,1}, C = Clone({A,V,Cy, C1}), where Cy,Cy are
constant operations, and let w be the binary weighting

W = —37T1 —47T2+1/\‘|‘3\/—|—2C()+101



Then the superposition

wlmy, m] = =3m[my, m] — dme[my, m] + LA [m, m] 4+ 3V [my, m]+
+ 200[77'1,71'1} + 101[7'('1,71'1] = —37’(’1 — 47T1 + 17T1 + 37T1 + 200 + 101 =
= —37T1+200—|—Cl

s proper, while the superposition

w[7r2, Co] = —371'1[77'2, CO] — 471'2[77'2, Cg] +1A [7’(’2, Cg] + 3V [7’(’2, Cg]+
+ 200[7'('2, Oo] + 101[71'2, Co] = —371'2 - 400 + 100 + 371'2 + 200 + 101 =
—Co+
1S 1Mproper.
We are now ready to define weighted clones.

Definition 17 (Weighted clone). A set of weightings W C W over a clone C
is a weighted clone over C' if it

1. contains all zero weightings (i.e. weightings 6 : C* — {0}), for every k € N;

2. is closed under conical combinations of weightings (more precisely, under
nonnegative scaling and sum of weightings, i.e. if w;,wy € W and ¢, qs €
7, then 0 := quw; + gows is also in W where 0(f) = qwi(f) + qawa2(f));

3. is closed under proper superposition (more precisely if a k-ary weighting w
isin W, g1, 92, ..., gx € C™ and wlgy, ..., gi] is proper, then w(gy, ..., gx] € W);

Example 11. For any clone C the set W containing all weightings of C is a
weighted clone. Also, the set W containing all zero weightings of C' is a weighted
clone. We call these weighted clones trivial, and all others nontrivial.

Example 12. The intersection of any set of weighted clones is a weighted clone.
As for clones, we define closure operator and k-ary parts of a weighted clone.

Definition 18 (Closure operator). For any set of weightings YW C W of a clone
C' we define wClone(W) to be the smallest weighted clone containing WW.

Fundamental link between weighted relations and weightings can by defined
using weighted polymorphism.
Definition 19 (Weighted polymorphism). Let R : D" — Q U {oco} be an r-ary
weighted relation on some domain D and let w be a k-ary weighting of some clone

of operations C on the set D. We say that w is a weighted polymorphism of R if,
for any @7, ..., € D" such that R(z;) < oo for i =1, ...,k we have

S (AR (@11, ooy T1k)s ooy [Tty ooy o)) < 0.

feck

If w is a weighted polymorphism of R, we say that R is improved by w. For any
given sets I' C wRp and W C W let

wPol(I') = {w € W¢| VR € I" w is a weighted polymorphism of R},
ImpW) ={R € wRp|Yw € W R is improved by w}.

10



It follows immediately from the definition of a Galois connection that, for any
set D, the mappings wPol and I'mp form a Galois connection between W and
wRp. This Galois connection for finite sets D is characterized by the following
theorem [6], [10].

Theorem 4 (Galois Connection for Valued Constraint Languages).
1. For any finite D, and any finite ' C wRp, Imp(wPol(I")) = wRelClone(T").
2. For any finite D and any finite W C W, wPol(Imp(W)) = wClone(W).

This means that there is one-to-one correspondence between valued langu-
ages closed under expressibility and weighted clones. Thus, we can investigate
the complexity of VCSP through weighted clones instead of relational weighted
clones.

2.3 Properties of weightings

Definition 20 (k-ary part of a weighted clone). Let W C W be a weighted
clone and let £ be a natural number. We define the k-ary part W* of W as a set
of all k-ary weightings in W.

Notation 6. Accordingly, the binary part of the weighted clone W is a set of all
binary weightings in W. We denote it by BP(W).

We do not prove the following technical Lemmas [I] 2] and Theorem [5, which
we will need further in the proofs of the main results of this work, because one
can find the proofs of these facts, for example, in the work of Jiti Vancura [§].
Lemma (1| shows that any conical combination of arbitrary superpositions of a set
of weightings can be obtained by taking a conical combination of superpositions
of this set with projections, and then taking a superposition of the result. Thus,
since the superposition with projections is always proper, any weighting which
can be expressed as a conical combination of arbitrary (possibly improper) su-
perpositions can also be expressed as a superposition of a conical combination of
proper superpositions. In other words, it allows us to use improper superpositions
when generating a weighted clone — as long as the resulting weighting is proper.
We state the lemma for the case of conical combination of two weightings but it
is clear that this constructions works for any conical combination.

Lemma 1. Let wy,ws be weightings of a clone C of arities k and | respectively.
Let g1, ..., gr and hy, ..., hy be m-ary operations in C and let aq, as be nonnegative
rationals. We define a (possibly improper) weighting

w = aqwr [TF L et 4 aws [t T (2.2)
Then
alwl[gla ceey gk‘] + QQWQ[hlv sy hl] = w[gh cooy Ok hla sy hl] (23)

Very often in further proofs we will use the following consequence of Lemma
that allows us to generate a weighted clone W = wClone(W) in one step. Namely,
it says that when generating a k-ary part of a weighted clone W = wClone(W),
we can consider only k-ary superpositions of weightings from W.

11



Lemma 2. (Superposition Lemma) Let W be a set of weightings of a clone C.
A k-ary part of the weighted clone W := wClone(W) is equal to the set of all
proper weightings of the form

Q1w [ fi1s s frg1] + @owa[fia, oy frg2] + oo+ 0wn [ fin, s frunn) (2.4)

where wy, ...,wy, are weightings from W with arities my, ..., My, ay,...,a, € Qf
and fi1, ., fry1s o fins ooy frngn are k-ary operations from C.

Note that the weightings in the conical combination may repeat.
Finally, Theorem [5| provides a way to determine if a weighted clone W is
trivial or not.

Theorem 5. (Positive Projection) Let W be a weighted clone over a clone C.
If there exist a k-ary weighting w € W such that w(m¥) > 0 for some coordinate
1<k, k>2then W =Wg.

We now introduce a binary relation on the set of all weightings W ¢ over a
clone C' which will help us to distinguish nontrivial weighted clones.

Definition 21. For a k-ary weighting w and a m-ary weighting 7 over a clone C
we say that weighting w generates weighting 7, denoted w — 7, if there exist non-
negative rationals sy, so,...,s, and m-ary operations fi1,..., fki1s s fins oo frun
from C' such that
T = 510[f11, s fra1] + s20[f12, o, fraz] oo+ 500 f1n, s fron] (2.5)
Note that if 7, w are proper weightings, then 7 € wClone(w).

Lemma 3. The binary relation — determines a quasitorder on W ¢.

Proof. Consider weightings over a clone C'. It is obvious, that w — w. Let’s
prove transitivity, i.e. that if 7 — 6 and § — w, then 7 — w. Suppose that 7
is a k-ary weighting, 0 is a m-ary weighting and w is a p-ary weighting. Since
T — 6 then there exist nonnegative rationals aq,...,«,, and m-ary operations

fi1seees fr1s ooy finy ooy fim from C such that
0= CV17—[f11a sy fkl] + O{27_[f12, ceey fk?] + O‘nT[flna ceey fkn]

Analogically, since § — w, there exist nonnegative rationals [, ..., 3; and p-ary
operations i1, ..., Gmis - Gty ---» gme from C', such that

w = B10[g11, . Gm1] + B20[g12, .., Gral... + Biblgus, .., Gt
Therefore

w = Br(arT[fi1s s fr1] + oo F QnT[f1ns s S 9115 oy Gma] + -
o+ BilaaT[finy ooy fra] + oo F anT[finy ooy Jrnl) G165 oy Gmi] =

= Bi(aq7[hin1y ooy hkat] + - + a7 [haats ooy Bant]) + -

o+ BilaaT[hat, ooy hpa1] + o + 17 [Pinty s Pient)) s

where hij. = fi;j[91r, .-, Gmr].- We see that w is just a conical combination of su-
perposition of 7. Therefore 7 — w and the binary relation — is a quasiorder. [

Definition 22 (Equivalent weightings). We say that two weightings w, 7 over a
clone C are equivalent, denoted w <>¢ 7, if 7 — w and w — 7.

By Lemma 3| the relation <+ is an equivalence relation. Note that two proper
weightings w <> 7 if and only if wClone(w) = wClone(T).
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3. Structure of weighted clones

A complete description of a lattice of all clones on a two-element domain {0, 1}
was provided by Emil Post in 1941 [4]. This lattice is depicted on Figure [3.1]

Figure 3.1: The Post lattice of clones on two-element domain.
[sourse https://upload.wikimedia.org/
wikipedia/commons/thumb/1/19/Post-lattice.svg]

The detailed analysis of the structure of weighted clones over the clones in
Post lattice was started by Jifi Vancura [8]. It turned out, that the structure
of weighted clones over some clones is quite simple. For example, there is a sin-
gle nontrivial weighted clone over each of the unary clones UD = Clone({—}),
UPy = Clone({Cy}), UP, = Clone({C:}) and over each of the binary clones
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AP = Clone({A}), VP = Clone({V}), and there are no nontrivial weighted clo-
nes over the ternary clones AP = Clone({min}) and DM = Clone({maj}).
But situation becomes more complicated when dealing with clones generated
by more than one operation. Jiti Vanc¢ura gave a complete description of the
structure of (uncountable many) weighted clones over the unary clone U =
Clone({—,Co}) and of structure of (three nontrivial) weighted clones over the
unary clone UM = Clone({Cy, C1}). He also proved some facts about the clone
MP = Clone({A,V}). We will improve his approach to investigation of the last
clone to obtain results for six other weighted clones.

In this chapter we partially describe the structure of weighted clones
over the clones APy = Clone({A,Co}), AP = Clone({N,C1}), NPy =
Clone({N,Cy,C1}), and dually VP, = Clone({V,Cy}), VP, = Clone({V,C1}),
VPy = Clone({V,Cy,C1}). For this first of all we will introduce concepts of
binary weighted clone and normed binary weighting. We also give a complete
description of all atomic and maximal weighted clones over the above-mentioned
clones.

3.1 Binary weighted clones

Definition 23 (Binary weighted clone). Binary weighted clone over a clone C
is a set of proper binary weightings W C W such that any proper weighting,
which is equal to conical combination of weightings of the form w|f,g], where
w € W and f, g are 2-ary operations from C, is in W.

Note that due to Lemma |2 the set of binary weightings W over the clone
(' is a binary weighted clone if and only if it is a binary part of some weighted
clone W’ over C, BP(W’). It is clear that different binary parts generate different
weighted clones, but different weighted clones might have the same binary part.

We will next examine weighted clones over the clones APy = Clone({A, Cy}),
APy = Clone({A,C1}) and APy, = Clone({A, Cy,C1}). Each of the clones AP,
and AP, contains exactly 2% k-ary operations: 2¥ — 1 k-ary meet operations of the
form

N (@1, o) = N\ @,
iel
where () #£ I C {1,...,k}, and one constant operation, Cy or Ci. The clone APy
hence has (2% + 1) k-ary operations. In our notation A¥ we will omit the arity
k in the superscript when the arity k is clear from the context. For I = {i} we
simply write A;, or 7F, and for Ag 2y we write A.

We are now not able to describe the complete structure of weighted clones
over these three clones, but we will give a full description of their binary parts
(or binary weighted clones). Binary operations of the clones APy, AP, and APy
are the two projections 7%, 72 and A, Cy for APy, A, Cy for AP, and A, Cy, C, for
AP

Definition 24. We say that a k-ary (possibly improper) weighting

w = Z OJ(/\I;) /\]; —|—ch + 001 (31)
0AIC{1,...k}

over a clone C' is normed if b4 ¢ = 1.
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Definition 25. Given a weighted clone W over a clone C' € {APy, APy, APy} we
denote Norm(W') the set of all normed weighting in W.

Note that every weighting with nonzero weight on at least one constants Cy, C
has an equivalent normed form. Since we will further work mostly with binary
weighted clones, we define the following weightings.

0

Definition 26. For non-negative rationals ai,as,0 <t < 1 we denote by w,, .,
Wa,a, and w . the normed (possibly improper) binary weightings

wng = —a1T — ATy + (al +ax — 1) A +CO
Whiay = —171 — a2y + (a1 + az — 1) A +Cy
wh o, = —a1m — agma + (a1 + az — 1) A +(1 — t)Co + tC.

We denote by w, the binary weighting

WA = —Q1TT] — QaTy + 2 A .
We call the weights on projections of W}, , ., i.e. a1, as, the coefficients of W}, . .
We will use the notation wy,,, without superscript when considering weighted
clones over the clones APy, AP, since there is no danger of confusion.

3.2 Binary weighted clones over the clone with
one constant

At first, we consider the weighted clones over the clones AFy, AP, since they
have analogical and easier structure than the common case with both constants.
Based on these results we will further describe the structure of binary weighted
clones over the clone APy, .

To a binary (possibly improper) weighting wq, ., we assign a point (as, as) in
Q2,, where

Q% = {(a,b) € Q*: a,b > 0}.

Thus, for example, as it is shown in Figure 3.2 a proper weighting ws 3 = =27, —
31y + 4 A\ +Cy corresponds to the point (2,3), and improper weightings wig =

—%m —%/\—1—6’0, wp,0 = —A~+Cj correspond to points (%, 0) and (0, 0) respectively.
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Figure 3.2: Correspondence between normed weightings and points in Q;O.

In this way, every set of normed weightings corresponds to a set of points in
Q2,. We will describe all binary weighted clones via the structure of the corre-
sponding sets in Q2,. The critical properties of those sets are described in the
following definition.

Definition 27. We say that a subset M of Q2% satisfies Property (x) if:
(1) M is convex, i.e., for every x3,x3 € M gnd every t € [0, 1] we have tx; +
(1 —t)xq € M;
(2) M contains the points (0,1) and (1,0);
(3) M is symmetric with respect to the line z = y, i.e. (z,y) € M < (y,z) € M;
(4) if M contains a point (x,y), then (z,0) € M and (0,y) € M.
For the clones APy, AP, we define two objects, M (W) and W (M), as follows:

Definition 28. Given a binary weighted clone W over a clone C' € {AFPy, AP}
we denote by M (W) the following set of points in Q%

MW) :={(b1, b2) : wpyp, is (possibly improper) weighting
such that wyp, < w € W}.

Definition 29. Given a set M of points in Q%, we denote by W (M) the set of
proper binary weightings

W(M) := {swaya, : (a1,02) € M,s > 0,a1 + as > 1} U {the zero weighting}.
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3.2.1 Binary weighted clones over the clone AF,

After these preliminary definitions we now start with describing weighted clones
over the clone APy = Clone({A, Cy}).

Lemma 4. For every nonnegative rationals a,,as, by + by > 1 the following is
true over the clone NPy:

(1) Wp —> Wajas 77 Wh;

(2) Wayay — W10 = Whyb, -

Proof. (1) Consider the binary superposition

a1wa [N, o] + arwa [, Al + wa A, Co| =
= as(— A —ma +2A) + a1(—m1 — A+ 2A) + (= A —=Cy + 2C)) =
= —QA171 — Q279 —+ (a1 + a9 — ].) VAN +OO

Therefore wyn — Wa,q,-
On the other hand, we cannot remove positive weight from Cj by any of the
4% = 16 binary superpositions of wy,,,. Indeed, there is the trivial superpo-
sition wy, q,[m1, e, there is the superposition wy, q,[ma, m1] that switches the
weights on projections, there is the zero superposition wg,q,[Co, Co|, there
are 6 superpositions for 1 = 1,2
walaz [ﬂ-i7 Tr’L] = Ty + 007
Watas [71'7;, Co] = —QT; — CLQC() + (CLl + a9 — 1)00 -+ C(] = —a1m; + alC'o,
Wayay |Cos Ti] = —aam; + azCo,
equal w = —m; + Cy for + = 1,2 multiplied by some nonnegative rational,
there are 3 superpositions,
Wayas [N A = — A +C,
Wayap [N Col = —a1 A —a2Co + (a1 + ag — 1)Coy + Cy = —ay A +a;,Cy,
Waias [C@, /\] = —ag N\ +CL200,
equal n = — A +Cj multiplied by some nonnegative rational. And finally,
there are 4 superpositions for i = 1,2
Wayas [Ty N = a1, — ag A +(ar + ag — 1) A +Cp = —arm; + (a1 — 1) A +Cy,
Wayan [N, Ti] = —agm; + (ag — 1) A +Cy,

which still have positive weight on Cjy. Therefore wg,q, - W.

Consider the binary superposition

1
—Waias [71'1, Co] = —7 -+ CO.
a1

Therefore wg,q, = wi0-

On the other hand, we cannot get positive weight on A by any of the
4! = 4 binary superpositions of wy g, since wy o[Co, —] is the zero weighting,
wiolm, =] = —m + Cp for i = 1,2 and w; o[\, —] = — A +Cp. Therefore
W1,0 7 Whiby-

]
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We will further use the following important consequence of the proof of the
previous lemma.

Corollary 1. Let wg,q, be a normed (possibly improper) weighting over the clone
APy and let

P= {(al, (12), (ag, al), (al, 0), (07 (11), (ag, O), (O, CLQ), (0, 1), (1, O), (0, 0)}

Then

1. For each point (a),al) € P there exist binary operations f,g from APy such
that waya,[f, g] is a positive multiple of Wy a -

2. For each binary operations f, g from APy, wWa,a,|f, 9] is either the zero weighting
or a positive multiple of waay, where (ay,ay) € P.

Lemma 5. For every nontrivial binary weighted clone W over the clone NFy the
set M(W) satisfies Property (x).

Proof. Consider a binary weighted clone W that contains an arbitrary nonzero

weighting with the zero weight on the constant Cy, say w = —ajm + agme + (a1 +
as)A\. Then
L (W~ wlmg, m]) = —m — M + 2/ =
) W s WA -
a1+ ay 2, M1 1 2 A

By Lemma || we know that w, — wy,p, for every by, by > 0. Thus, M(W) = 220
and therefore M (W) satisfies Property ().

Now consider a binary weighted clone W whose all nonzero weightings have
nonzero weight on the constant Cy. We have to prove that M (W) satisfies Pro-
perty (x).

We first prove that M (W) is convex. Note that all points in the triangle with
the vertices (1,0),(0,0), (0,1) correspond to improper weightings. Consider any
point (aj,az) € M(W). According to Definition 28| there exist proper binary
weighting wgr e, such that wy e — wae,. For every aj,a; > 0 the weighting
Wayay DY the superpositions wg, e, [m1, 1], Wayay[m2, T2] and wa,q,[A, A] generates
the weightings w; o, wo1 and wy respectively. By the transitivity Wataly, — W10,
Wajay — Wo,1 and wyay — Woo- Since for every point (af,ay), where af,ay > 0,
al + a4 < 1 there exist nonnegative rationals sy, o, 53, where s; + sy + s3 = 1,
such that

Warrall = S1W1,0 + Sawo,0 + S3Wo,1,
then wy on — waray. Hence M (W) contains the whole triangle with the vertices
(1,0),(0,0),(0,1).

Now consider any two points (ay, as), (b1, b2) € M (W) such that a; +as > 1,
b1 + by > 1. Due to definition 28] wa,a,, whs, € Norm(W). For every ¢ € [0, 1] the
point

t(a1, CLQ) + (1 — t)(bl, bg) = (ta1 + (1 — t)bl,tag + (1 — t)bg)

corresponds to the normed weighting

w(ta1+(17t)b1),(ta2+(17t)b2) = twmaz + (1 - t)wble =
= —(ta1 + (]. - t)bl)’ﬂ'l — (tCLQ + (1 - t)b2)7T2+
+ (t(ay + ag) + (1 —t)(by + b)) — 1) A +C.
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Since the binary weighted clone W is closed under nonnegative scaling and sum of
weightings, then the weighting wia, +(1-t)61),(tas+(1—t)bo) € Norm(WW) and therefore
the point (ta; + (1 —t)by,tas + (1 — t)by) € M(W). Together with the fact that
M (W) contains the triangle with the vertices (1,0), (0,0), (0,1) it follows that
M (W) is convex.

Now it is sufficient to note that by Corollary 1| for every (possibly improper)
normed weighting wy, 4, such that (a;,as) € M(W), M(W) contains all the points
(a},al), where

(allva/2) € {(a17a2)7 (aQaal)v (alao)’ (07@1)7 (aQaO)v (O’a2)7 (07 1)7 (170)’ (070)}

Therefore M (W) satisfies the conditions (2), (3), (4) in the definition of Property
(). O

a2

Cf?j,g = W32 [7T2, 7T1]

w30 = w3 2T, Al
(431

Figure 3.3: Illustration to Lemma [5

Lemma 6. For every set M C Q% that satisfies Property (), W(M) is a binary
weighted clone.

Proof. Consider a proper binary weighting w which is equal to
w = rwi[fi, 1] + rawalfz, go] + ... + o[ fas ral,

where ry, 79, ..., 7, are nonnegative rationals, wy,ws, ...,w, € W(M) and f;, g; for
i =1, ...,n are binary operations from the clone AFy. According to Definition [29]
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each w; for i = 1, ..., n is of the form s;w,;,, where (a;, b;) € M. By Corollary , for
every f;, g; from AP, the superposition wg,,[fi, ¢:] is either the zero weighting or
positive multiple of wy for some (a, b;) € M. Assume without loss of generality

that wy,p, [ fi, gi] for every i = 1,...,n is not the zero weighting. Therefore, for some
positive rationals k1, ..., k,, we can rewrite w as

w= rlslklwa;b; + o TpspknWar v =

= (Tlslkl + ...+ 7hnsnkn)(pl‘*‘)a’lb’l + .t pnwaﬁlb’n) = SWap,

where s = (r1s$1k1 + ... + raspkn), (01 + . +pn) = 1, a = (pra) + ... + ppal)
and b = (p1b] + ... + p,bl,). Since M is convex, then (a,b) € M and therefore
w € W(M). According to Definition 23] W (M) is a binary weighted clone over
the clone AF,. O

Before we turn to the main result of this section, which concerns the complete
classification of binary weighted clones over the clone AFy, we formulate Theorem
[l about the largest and the smallest nontrivial weighted clones over the clone AF.

Theorem 6. The largest nontrivial weighted clone over the clone NPy is Wy,
defined as follows: a k-ary weighting w is in W, if and only if for each nonempty
set of coordinates I C {1, ..., k}

> w(ng) <0 (3.2)

0£JCI

Moreover W, is generated by the weighting wx = —m — Ty + 2A.
The smallest nontrivial weighted clone over the clone APy is Wi, defined as
follows: for every k

Wllfo ={w € Wyp, : foreverylI C{1,...,k} suchthat |I| > 1, w(A;) = 0}.
Moreover Wi o is generated by the unary weighting wy o = —m1 + Cy.

We do not give a whole proof for the largest nontrivial weighted clone W,,
since the main idea belongs to Jifi Vancura and was in detail described by him
for the weighted clone over the clone A = wClone(A) [§]. We only consider parts
that concern the appearance of the constant Cj in the clone AF.

Proof. For the first part of the theorem we first prove that any k-ary weighting w
that is not in W, generates the trivial weighted clone Whp,. Let 0 4 I C {1, ..., k}
be a set of coordinates for which w violates the condition (3.2), i.e. such that
>ozscrw(As) > 0. Assume without loss of generality that I = {1,2,...,p}. We
consider a superposition of w with two projections 7y, w5 such that we input m
into the coordinates from I and 7y elsewhere. Then the resulting weighting

W= W[y, ey T, Ty e, W] =
N———

p
Z (JJ(/\J)7T1 + Z w(/\J/)WQ + Z w(/\J//) A 4cCy
0#JCI 0#J C{1,....k}\I 0#J", J"'NI£ON
J'OJT 4D

is proper and has weight >y ;c;w(A ;) > 0 on projection 7. Due to Theorem ,
w generates the trivial weighted clone Wy p, .
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We now can prove that W, = wClone(w,). To show, that wClone(w,) C W,y
we have to prove that w, does not generate any weightings outside of W,. We
already know that any weighting outside W, generates all weightings, i.e. if wx
generates some k-ary weighting, then w, generates any m-ary weighting (and due
to Lemmawe can do it in one step). Thus, it is sufficient to show that we cannot
generate any binary weighting outside of the Wj. In order to generate positive
weight on projection we have to move the weight 2 from A to a projection. But
it can be done only by superpositions wn[m;, m;] for ¢ = 1,2, which is the zero
weighting.

The fact that every k-ary weighting w € W,, which has the zero weight on the
constant (), is generated by the weighting w,, was proved by Jit{ Vancura using
Farkas’ lemma (see [§]). Thus, to prove that W, C wClone(w,) it is now sufficient
to show that any nonzero k-ary weighting 0 = > p_;cq1, i w(AE) AR 4-cCy with
¢ > 0 from W, can be generated by an appropriate weighting w from W, with
the zero weight on the constant Cy. Consider the (k + 1)-ary weighting

k+1 k+1 k+1
w= > wAH) At +c/\{f._.7k’k+1}.
0AIC{1,...k}

The weighting w is from W,. Indeed, since § € Wj,, then for each nonempty
set of coordinates I C {1,...,k} the sum Yy ;c;w(A%) < 0. Since w(A}!) =0
for every proper subset I’ C {1,....,k + 1} such that {(k + 1)} € I’ and the
sum Z@#g{l’m,k}w(/\’frl) + ¢ = 0, then the extension of the set {1,...,k} to
the set {1,...,k, k + 1} does not change the inequality. Also, it is easy to see
that the superposition w|my, ..., g, Co| equals 6. Thus, by transitivity, w, — 0
and W, C wClone(wy). Therefore, W, = wClone(w,) and since each weighting
outside of W, generates the trivial weighted clone AF,, W, is the largest weighted
clone over the clone AF,.

For the second part of the theorem we first prove that W, g = wClone(w; ).
On the one hand, each k-ary weighting w from W g is of the form

W= —a1m — QMo — ... — AT + (a1 + ag + ... + ax)Cy =
al(—ﬂ'l + Co) + CLQ(—ﬂ'Q + C()) + ...+ ak(—ﬂk + Cg) =

&1(&)170[71'1] -+ CZQWLQ[TFQ] + ...+ akwl,o[ﬂ'k].

Therefore, each weighting w € W o is in wClone(w ), i.e. Wi C wClone(wy ).
On the other hand, due to Lemma[2] we can generate a k-ary part of the weighted
clone wClone(wy ) in one step by only k-ary superpositions of wy . That is, for
every proper k-ary weighting w € wClone(w; ) there exist nonnegative rationals
ay,...,ag, by for I C {1,...;k},|I| > 1 and ¢ such that w is equal to:

w = —1—a1w1,0[/\1] + ...+ &kwlyo[/\k] + Z b[wLo[/\]] + CCL)LO[OQ} =

0AIC{1,...,k}
[7]>1

ar(— A +Co) + o+ ap(= A +Co) + D bi(= Ar+Co) 4+ ¢(—Co + Cp) =

0AIC{1,...k}
[7]|>1
—a1 N\ —... —ap N\ — Z br N1 —l—(a1+...—|—ak)00+( Z b])OO.
0AIC{L,...k} OAICAL,...k}
[T]>1 [7]>1
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Since w is proper, we have by = 0 for all I C {1,....,k},|I| > 1. Thus, every
k-ary weighting w € wClone(w ) is in W{fo and wClone(wy9) € Wi . Therefore
wClone(wyg) = Wi . This proves that Wi is actually a weighted clone and is
generated by the weighting w; .

Finally, we show that W), is the smallest nontrivial weighted clone, i.e. is
contained in all nontrivial weighted clones. Indeed, let 7 be an arbitrary k-ary
nonzero weighting that does not generate all weightings. If 7 has the zero weight
on the constant Cy, then 7 generates the largest nontrivial weighted clone W,.
Otherwise, if 7(Cy) = ¢ > 0 consider the superposition:

1 1
—7[m, 71, e, T = 7<c7r1 —I—cC'O) = —m + Cp.
c c

That is, in both cases wClone(w;y) C wClone(r). Therefore Wy is smallest
weighted clone over the clone AF. [

The next theorem another significant weighted clone over the clone AF,.

Theorem 7. The nontrivial weighted clone over the clone APy that contains all
others nontrivial weighted clones except the weighted clone Wy is Wy, defined
as follows: a k-ary weighting w is in Wy if and only if for each nonempty set of
coordinates I C {1, ..., k} and for each nonempty set of coordinates T'C {1, ..., k}
such that T N {j : w(xk) < 0} #0,

> w(nh) <o, (3.3)
P£JCI

Y. w(nh) <o. (3.4)

0£JCT

Proof. We first prove that W, is a weighted clone. It is obvious that W, is
closed under conical combinations of weightings, since for each 6,7 € W, and
p,q € Qf the weighting w = pf + g7 has weight on operation f that equals
w(f) = pb(f) + ¢q7(f). Thus we only have to prove that W, is closed under
proper superposition. Consider a proper k-ary weighting w = 7[f1, f2, .., finls
where the weighting 7 is in W/, and operations f1, fa, ..., f, are from (APy)E.
We have to prove that w satisfies conditions (3.3) and (3.4).

From Theorem @ we know that every 7 from W,y can be generated by the
weighting w,, which does not generate any weighting outside the weighted clone
W. Since by transitivity w, generates T[fi, ..., f] for every fi, fo,..., fm from
(APy)*, then for each nonempty set of coordinates I C {1,...,k}

Yo owlAs) = 3 Tl fal(A)) <0

0A£JCI 0#£JCI

and w satisfies condition (3.3).

Now let’s prove that for each nonempty set of coordinates 7' C {1, ..., k} such
that 7N {j : w(n}) <0} # 0, Xprscrw(Af) < 0. Suppose that there exist a set
of coordinates T" C {1, ..., k} such that for some j € T"

w(Th) = 7[fr s f) (5) <0, but - Y w(Ab) = 30 7[fr, . ful(Af) = 0.

0£JCT' 0£JCT!
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Note that we can get the weight 7[f1, ..., fm](ﬂf) on 7r§C only by substitution of
some set of projections {77, ..., 77"} in 7[a{", 73", ..., m| to wF. Thus, there exist

a set of coordinates {s: f, = nF, wheret € T'} = T" C {1,...,m} such that for
some s € {s1,..., 5.}

(') <0, but > T(A})=0.
0£JCT"

But it is contradiction, because 7 € W,4. Thus, w satisfies condition (3.4) and
Wezo is a weighted clone.

It remains to prove that W, contains all other nontrivial weighted clones, ex-
cept the weighted clone W, . Consider an arbitrary k-ary nonzero proper weighting
w which violates one of the conditions (3.3), (3.4). If w violates condition (3.3),
i.e. there exist a subset I C {1,...,k} such that >y, ;c;w(As) > 0, then, as we
know from the proof of Theorem [6], w generates the trivial weighted clone Wy p,. If
w violates condition (3.4), then there exist some set of coordinates I C {1, ..., k}
such that I N {j : w(m;) < 0} # 0 and Yy, ;c;w(As) = 0. We can assume that
I ={1,2,...,p}. Then the superposition

w,:w[ﬂ'l,...,ﬁp,OQ,...,C()] = Z w(/\J) Ny —f-(C—f- Z CU(/\J))C()
PAJCI JIC{1,....k}
J'N{p+1,....k}#0

is a proper nonzero weighting with the zero weight on the constant Cj. Due
to Theorem [6] ' generates the weighted clone W,. Since every proper nonzero
weighting, which is not in W, generates either W,p, or W, then the weighted
clone W,y contains all nontrivial weighted clones, except W,.

O

Now to describe all binary weighted clone over the clone AFy we can formulate
the following Theorem [§|

Theorem 8. FEvery nontrivial binary weighted clone over the clone AP, is either
BP(W,) or is equal to W (M) for some M C Q2% satisfying Property (x). For

every two sets M, M’ satisfying (x), W(M) C W(M') if and only if M C M’,
and W (M) C BP(W,).

Proof. Consider nontrivial binary weighted clone W that contains an arbitrary
nonzero binary weighting w = —aym; — asme + (a1 + az)A with the zero weight on
the constant Cy. As we know from the proof of Lemma [f, w — wx. By Theorem
6, W contains BP(W,) and since W, is the largest nontrivial weighted clone,
W = BP(W,) and contains all other binary weighted clones.

Now consider an arbitrary nontrivial binary weighted clone W over the clone
APy that contains only binary weightings with nonzero weight on the constant Cj
(except the zero weighting). Due to Lemma |5 the set M (W) satisfies Property

To prove the first part of the claim it is enough to verify that W (M(W)) = W.
Consider an arbitrary nonzero binary weighting w € W. Since w(Cy) # 0, then
W = SWa,q, fOr some nonnegative rationals s, aj, as. Therefore (ay,ay) € M(W).
Since w is proper, then a; + as > 1 and w = swy,q, € W(M(W)). On the other
hand, according to Definition 29| each binary weighting w € W (M (W)) is proper
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and of the form sw,,q, for some s > 0 and (a1, a2) € M(W), where a; + as > 1.
That implies wgy,q, € Norm(W). Since W is closed under nonnegative scaling,
then w = swy,q, € W. Therefore, W(M(W)) = W.

For the second part of the claim note that if M C M’, then W(M) C W(M’)
directly from the definition of W (M). On the other hand, if there exist a point
(a1,a9) € M such that (aj,as) ¢ M’, then a; + as > 1 (since both M and
M’ contain the triangle with the vertices (1,0), (0,0), (0,1)). Thus, the weighting
Wayas, 18 proper and is in W (M) but not in W(M’). Therefore W (M) & W (M').

[

a1

Figure 3.4: Illustration to Theorem [§

It follows from Theorem [§that there are binary weighted clones, which are not
finitely generated. Moreover, there is continuum many binary weighted clones. A
2-generated and an infinitely generated binary weighted clones are shown in the

Figure 3.5
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Figure 3.5: 2-generated and infinitely generated binary weighted clones.

To illustrate the lattice of binary weighted clones over the clone APy we intro-
duce the following notation. Given a binary weighting in normed form wg,q, we
denote the binary weighted clone generated by this weighting by W, 4,. (Given
a set of binary weightings in normed form wg,q,, Wby, ... We denote the binary
weighted clone, generated by those weightings by Wa, a4, .5165....-)

«BP(Wip,)

BP(1V,)

BP (W)

D P(Wl ())

)

BP (W)

Figure 3.6: The lattice of binary weighted clones over the clone AF,.
Since the dual operations to A, Cy are V and C}, weighted clones over the
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clone VP =Clone({V, C1}) have the similar structure.

Corollary 2. The largest nontrivial weighted clone over the clone VP is W,
defined as follows: a k-ary weighting w is in W\, if and only if for each nonempty
set of coordinates I C{1,....,k}

S w(vy) <0. (3.5)
P£JCIT

Moreover W\, is generated by the weighting wy = —m — Ty + 2V.
The smallest nontrivial weighted clone over the clone VP is Wi, defined as
follows: for every k

Wiy ={w e Wyp, : foreveryl C{1,....k} suchthat|I| > 1, w(V;) = 0}.
Moreover Wi o is generated by the unary weighting wy o = —m + C}.

Corollary 3. The nontrivial weighted clone over the clone V Py that contains all
others nontrivial weighted clones except the weighted clone W\, is Wy, defined
as follows: a k-ary weighting w is in Weyo if and only if for each nonempty set of
coordinates I C {1, ..., k} and for each nonempty set of coordinates T'C {1, ..., k}
such that T N {j : w(x¥) <0} # 0,

> w(vh) <0, (3.6)
0£JCI

> w(Vh) <. (3.7)

0+JCT

Corollary 4. Fvery nontrivial binary weighted clone over the clone VP, is either
BP (W) or is equal to W (M) for some M C Q% satisfying Property (x). For
every two sets M, M’ satisfying (x), W(M) C W(M') if and only if M C M,
and W(M) C BP(W,).

3.2.2 Binary weighted clones over the clone AP,

Now we will consider weighted clones over the clone AP;=Clone({A, C;}). The
structure of weighted clones over the clone AP, is very similar to the one over
the clone AF,. The essential difference between those two structures is in the fact
that in the most cases we can remove positive weight from C'.

Lemma 7. For every nonnegative ay,as, by + by > 1 the following is true over
the clone ANP;:

(1) wa and wy o are incomparable and wx —+ Wayays W10 7 Whyby s

(2) if at least one of the two coefficients ay,as > 1 then wClone(wq,ay) = Wap, .
Otherwise, wWq,q, and wx are incomparable and wq,q, — Wi -

Proof. (1) It is sufficient to note that we cannot get positive weight on A by
any superposition of w; ¢ and since

wA[Cl,Cl] =0,
WA[ClﬂTi] = wA[Wi, Cﬂ =m—C,1=1,2,
wA[Cl,/\] = OJ/\[/\,Cl] =N — Cl,

then we cannot get positive weight on C by any superposition of wp.
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(2) There are 4> = 16 binary superpositions of wq, 4,

The superpositions wq,a, [T1, T2], Wayas M2, T1]s Waray [C1, Chls Wayas [N, A and
Wayas [Tis Ti]s Wayas [Tiy Ny Wagas [N, ™) for @ = 1,2 are the same as in the case of
the weighting w,, 4, over the clone AF, with the only difference that instead
of the constant C there is the constant C4.

The last 6 superpositions differ because of properties of the constant C.
For+:=1,2
Wayas[Ti, C1] = —a1m; — a0y + (a1 + ag — )m; + C1 = (ag — D)mi + (1 — a2)Ch,
Waras [C1, ) = (a1 — 1) 4+ (1 — aq)Ch,
A, C1] = —a1 A —asCh + (a1 + aa — 1) A+C = (ag — 1) A +(1 — a2)Cy,
[C1,A] = (a3 — 1) A+(1 — aq)Cy.
Thus, if neither a; > 1 nor as > 1, then we cannot get negative weight

on Cy. Therefore wy 4, - Wa. Since wp - Wa,a,, then wy, ., and w, are
incomparable.

Consider the conical combination

(a1 + a9 — ]_)
0= gy meal O N G, =
= (a1 +ay —1)(— AN+C1) —aym —asme + (a1 + as — 1) AN+C) =
= —Q1T] — Q979 + (CL1 + az)Cl.
Then
1
a1+ ag (71, 1] m + 01 = wip

Since wg,q, — 0 — W0, according to transitivity, wq,q, — W1,-

On the other hand, if at least one of the two coefficients a1, as > 1 (without
loss of generality assume a; > 1), then the conical combination

76&)@1@2[01,71'1] = —T2 + Cl -+ T — Cl = T — Ty

9 = wala2[7T277TQ] + a1 — 1

is a proper weighting and has positive weight on the projection ;. Therefore
by Theorem |p|, w,,q, generates the whole Wyp,.
m

Corollary 5. Let w be a proper k-ary weighting w with nonzero weight on the con-
stant over the clone APy. Assume that there exists a nonempty set of coordinates

I C{1,...,k} such that
> w(ng) < —w(Ch). (3.8)
0£JCI
Then w generates the trivial weighted clone Wp, .
Proof. Without loss of generality we can assume that I = {1,...,p}. Then the

conical combination
1 1

0 = W|T2, ..., Ty + wC’l,...,C’l,m,...,m =
w(Ch) | ] — Yprscrw(Ag) — w(Ch) [T |
=-m+C+m—C=m —m
is a proper weighting with positive weight on the projection 7. O]

27



Corollary 6. Let w,,q, be a normed (possibly improper) weighting over the clone
APy such that 0 < ay,ay <1 and let

P = {(al, ag), (GQ, al), (0,1, 0), (0, al), (ag, O), (O, az), (0, 1), (1, O), (0, 0)}

Then

1. For each point (a},al) € P there exist binary operations f,g from APy such
that Waya,[f, g] is a positive multiple of waa -

2. For each binary operations f, g from APy, wa,a,|f, 9] is either the zero weighting
or a positive multiple of wa;ay, where (ay,ay) € P.

Although definitions of the objects M (W) and W (M) over the clone AP, are
the same as of the ones over the clone AFy, the lemmas about them differ a little.

Lemma 8. For every nontrivial binary weighted clone W over the clone NPy the
set M(W) is either empty or satisfies Property (x).

Proof. Consider a binary weighted clone W that does not contain nonzero wei-
ghtings with nonzero weight on the constant C;. Since for an arbitrary binary
weighting w = —aym; + agmy + (a1 + az)A from W

1

ai + as

(W~ wlmg, m]) = =71 — o + 2A = wp,

and on the other hand
a1wa[m1, A] + arwalme, Al = w,

then w, and w are equivalent. By Lemma [7| for any by,by > 0 the weighting wx
does not generate the weighting wy,;,. Thus, the set M (W) is empty.

Now consider a binary weighted clone W that contains an arbitrary normed
weighting w,,,. Replacing Cy with 'y in reasoning of Lemmas [5| proof we prove
that M (W) satisfies Property (x) as well. O

Lemma 9. For every set M C Q2% that satisfies Property (*) and is contained

in the square with vertices (1,0),(0,0),(0,1),(1,1), W(M) is a binary weighted
clone.

Proof. The proof of this Lemma is exactly the same as for Lemma [0 since the
restriction to be contained in the square with vertices (1,0),(0,0),(0,1),(1,1)
does not affect the properties of M. n

28



—T —7T2+/\+Cl
A +Cy

[7]-2777.1]

wio=—m +C)
3]

Figure 3.7: Illustration to Lemma [

Before we formulate the main result about the classification of all binary
weighted clones over the clone APy we consider Theorem [J] concerning two atomic
weighted clones.

Theorem 9. There are two atomic weighted clones over the clone AP;:

(1) the mazimal weighted clone Wy, defined as follows: a k-ary weighting w is
in Wh if and only if w(Cy) = 0 and for each nonempty set of coordinates

[C{1,. k)
> w(ng) 0. (3.9)
0£JCI

Moreover, W, is generated by the weighting w, = —m; — o + 2A;

(2) the weighted clone Wi, defined as follows: for every k
Wﬁo ={w € Wyp, : foreveryI C{1,...,k} suchthat |I| > 1, w(A;) = 0}.
Moreover, Wi is generated by the unary weighting wy o = —m + C.

Proof. Firstly, the proof that W, = wClone(w,) coincides with the proof of the
same fact given by Jiff Vancura over the clone A = Clone(A) (see [§]).

Secondly, the proof that W; o = wClone(w; ) coincides with the proof of the
same fact in Theorem [6] if we change the constant Cy to the constant C'.

Finally, it is clear from Lemma m that W o g_ W, and W, Q Wip. Thus, it
remains to show that W;, and W, are atomic, i.e. that each nonzero weighting
generates a weighted clone that contains W, or W) . Indeed, let 7 be an arbitrary
k-ary nonzero weighting. We have to consider two cases. If 7 has the zero weight
on the constant C4, then 7 — w,. Thus, 7 generates the weighted clone W, (see
[8]). If 7(C1) = ¢ > 0, consider the superposition:

1 1

*T[’/Tl, ...,7T1] = *(C’/Tl + CC()) = —m + Co.
C C
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That is, wClone(ws o) C wClone(r). Therefore Wi o and W, are atomic weighted
clones over the clone AP;. O

Corollary 7. For an arbitrary proper k-ary weighting w with positive weight on
the constant and for an arbitrary nonzero proper m-ary weighting T with zero
weight on the constant wClone(w,T) = Whp,.

We now describe another maximal weighted clone over the clone AP;.

Theorem 10. The maximal weighted clone over the clone APy that contains all
others nontrivial weighted clones except the weighted clone Wy is W<_., defined
as follows: a k-ary weighting w is in W<_. if and only if for each j € {1,...,k}
and for each nonempty set of coordinates ) # K C I C {1,....k}

w(m;) <0, (3.10)
Yoowla) < Y wly). (3.11)
0A£JCI 0£JCK

Proof. We first prove an auxiliary statement.

Claim 1. A k-ary weighting w is in W<_. if and only if for each binary operations
915 G2, - G from (APy)? a weighting ¢ = w(g1, g2, ..., x| for i = 1,2 satisfies the
condition

—¢(C1) < ¢(m;) < 0. (3.12)

Proof of Claim 1. Consider an arbitrary k-ary weightings w € W<_. and the
superposition ¢ = w(g1, go, ..., gx], Where g1, 9o, ..., gx € (AP1)?. There are only
four binary operations containing in (AP;): the two projections 7y, mo, the meet
operation A and the constant operation Cy. Let T, = {j : g; = C1}, T, = {J :
g; = m;}. Note that

(b(Tl'l) = Z CU(/\J) = Z w(/\J) — Z w(/\J) < 0,
0#JCTe, UTy,, 0#JCTe, UTy, 0£JCTe,
JNTr, #0

since w satisfies condition (3.11) and

P(C1) = D wlAng)+w(Ch).

0£JCTo,
Therefore
om) +o(C) = > wlh)— D wA)+ Y wAg) +w(C) =
0£JCTc, UTx, 0#£JCTc, 0£JCTo,

= > wlA)+w(@) =

0#JCTo, UTs,

= Z w(/\J> - Z w(/\J) >0,

0#JCTe, UTx, 0AIC{1,....k}

again, since w satisfies condition (3.11). Thus, ¢ satisfies conditions (3.12).
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On the other hand, assume that proper weighting w is not in W<_.. If w
violates condition (3.10), then there exist j € {1,...,k} such that w(m;) > 0.
Then the superposition

¢ = wlm, 1, ... T, ...y T

with the second projection on the j-th coordinate violates condition (3.12), since
¢(m) > 0. If w violates condition (3.11), then there exist two nonempty sets
0 # K C I C{l,..k}, such that Yg ;crw(As) > Yprscx w(Ay). Without
loss of generality we can assume that K = {1,...,p}, I = {1,...,p + t} for some
0 < p,t. Then superposition

¢ = W[Cl, ey Cl,ﬂ'l, <oy T G(p+t41), 7gm]
———— T/
p

violates condition (3.12), since

o(m) = Z w(Ay) — Z w(Ay) > 0.

0£IC{L,....(p 1)} 0£IC{L,...p}

Now we are ready to prove Theorem [I0] We first show that W< _. is a weighted
clone. It is obvious that W<_. is closed under conical combinations of weightings.
Thus, we only have to prove that W<_. is closed under proper superposition.
Consider a proper nonzero m-ary weighting 7 = w[f1, f2, ..., fx], where the nonzero
weighting w is in W& __ and operations fi, fo, ..., i are from (AP;)™. We have to
verify conditions (3.7) and (3.8) for 7.

According to the Claim above, it is sufficient to show that for each binary

Operations 91,92, --+s 9m from (/\Pl)2 the Welghtlng ¢ = w[fla f27 ) fk][gh ng]
satisfies condition (3.12). But the superposition

¢ = w[fl; f27 ) fk][gh ng] = w[fl(glv ‘”7gm)7 X fk(gb 7gm)]7

where f1(g1, .-, gm)s - fx(g1, ---, gm) are binary operations. Thus, ¢ satisfies con-
dition (3.12), since w € W< _..

It remains to prove that W<_. contains all other nontrivial weighted clo-
nes, except the weighted clone W,. Consider an arbitrary k-ary nonzero pro-
per weighting w that violates conditions (3.10), (3.11). If w violates condition
(3.10), then by Theorem |5, wClone(w) = Wap,. Assume that w violates condi-
tion (3.11). Then there exist two nonempty sets ) # K C I C {1,...,k}, such
that > g, crw(As) > Ygzscx w(As). Again, without loss of generality assume
that K = {1,...,p}, I = {1,...,p + t}. First note that conditions (3.10), (3.11)
imply w(Cy) > 0. f w(C}) = 0, then w — w,, and W, C wClone(w). If w(Cy) > 0,
then the conical combination

Z@;&J(;{l,...,p} w(Ag)
w(Ch)

0 = w[Ch, ..., CL T, ooy T, Tpttg1)s -or T + wlmy, ..., mo]
—_——— ———

p t

is proper weighting with positive weight on the projection 7; and therefore gene-
rates Wyp,.
O

31



Now to describe all binary weighted clone over the clone AP; we can formulate

the following Theorem [11}

Theorem 11. Fvery nontrivial binary weighted clone over the clone AP is either
BP(W,) or is equal to W (M) for some M that satisfies Property (x) and is
contained in the square with vertices (1,0),(0,0),(0,1),(1,1). For every two such
sets M, M’ the binary weighted clone BP(W,) is incomparable with W (M) and
W(M) C W(M') if and only if M C M'.

Proof. Consider an arbitrary binary weighted clone W. From Corollary 7| we
know, that if W contains both a nonzero weighting with the zero weight on the
constant C'; and a nonzero weighting with positive weight on the constant, then
W is the binary part of the trivial weighted clone AP;. Indeed, in this case W
contains the weighting w,,,, with at least one of the coefficients a;, ay is greater
than 1, which due to Lemmal7] generates all the weightings. If W does not contain
a nonzero weighting with positive weight on the constant, then, by the proof of
Lemma [§ W is the binary part of W,. Therefore, it is sufficient to consider an
arbitrary binary weighted clone W over the clone AP, that contains only binary
weightings with positive weight on the constant C; (except the zero weighting)
and which, being normed, have coefficients a1, as < 1. The rest of the proof is the
same as in Theorem [§ O

It follows from Theorem [11] that there are binary weighted clones, which are
not finitely generated. Moreover, there is continuum many binary weighted clones.

To illustrate the lattice of binary weighted clones over the clone AP; we use
the notation of Section 3.2.1.

BP(W,,)

BP(WW,)

BP(Wy)

Figure 3.8: wedgeThe lattice of binary weighted clones over the clone AP;.
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The dual operations to A and C; are V and Cj. Hence the weighted clones
over the clone VFPy=Clone({V, Cy}) have the same structure as AP;.

Corollary 8. There are two atomic weighted clones over the clone VFy:

(1) the mazimal weighted clone W\, defined as follows: a k-ary weighting w is
in Wy if and only if w(Cy) = 0 and for each nonempty set of coordinates
IC{l,.. k}

> w(vy) <o. (3.13)
OAJCI

Moreover, W\, is generated by the weighting wy, = —m; — o + 2V;

(2) the weighted clone W g, defined as follows: for every k
Wiy ={w e Wyp, : foreveryl C{1,....k} suchthat|I| > 1, w(V;) = 0}.
Moreover, W1 is generated by the unary weighting wy o = —m + Cy.

Corollary 9. The maximal weighted clone over the clone Py that contains all
others nontrivial weighted clones except the weighted clone Wy, is W<_., defined
as follows: a k-ary weighting w is in W<_. if and only if for each j € {1,...,k}
and for each nonempty set of coordinates ) # K C I C{1,....k}

w(m;) <0, (3.14)
dYoowlva) < Y w(vy) (3.15)
PAJCI 0£JCK

Corollary 10. Every nontrivial binary weighted clone over the clone V Py s either
BP(W\) or is equal to W(M) for some M that satisfies Property (%) and is
contained in the square with vertices (1,0), (0,0),(0,1),(1,1). For every two such
sets M, M’ the binary weighted clone BP(W\) is incomparable with W (M) and
W(M) C W(M') if and only if M C M'.

3.3 Binary weighted clones over the clone AF)

We now can combine all previous results to describe the structure of weighted
clones over the clone APy; = Clone({A, Cy, C1}). Before we get to description
we need to redefine several objects, because in the case over the clone with two
constants, we cannot avoid parameter ¢ in set of indices and have to work with
three-dimensional space instead of a plane.

To a binary (possibly improper) weighting w
in three-dimensional space Q2,,, where

30 =1{(a,b,t) € Q*: a,b,t > 0}.

t

t.a, We assign a point (ay, as,t)

Thus, for example, a proper weighting aég = —2m — 3me + 4 A —i—%C’o + iCl
corresponds to the point (2,3, i)7 and improper weightings wg’o = — A +Cy,
wpo = — A +C4 correspond to points (0,0,0) and (0,0, 1) respectively.

We will also use the notation:

S0 = {(a,b,0) € Q°: a,b > 0}.
S ={(a,b,1) € Q’: a,b>0}.
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Definition 30. We say that a subset M of Q?éo satisfies Property (+x ) if:

(1) M is convex, i.e., for every x1,xs € M and every t € [0, 1] we have txq +
(1 —t)xq € M;

(2) For every t M is symmetric with respect to the line x = y, ie. (x,y,t) €
M < (y,z,t) € M;

(3) For each t if (x,y,t) € M, then M contains the points (0, 1,¢) and (1,0,1).
Moreover, if 0 < ¢t < 1, then (x,y,0),(z,y,1) € M;

(4) if M contains a point (x,y,t), then (z,0,t) € M and (0,y,t) € M.
For the clone APy ; we define two objects, M (W) and W (M) as follows:

Definition 31. Given a binary weighted clone W over a clone C' we denote by
M(W) the set of points in Q2

MW ) :={(b1,bs,t) : wy,,, is (possibly improper) weighting
such that wy ,, + w € W}.

Definition 32. Given a set M of points in Q%, we denote by W (M) the set of
proper binary weightings

: (ay,a9,t) € M,s > 0,a; + as > 1} U {the zero weightings}.

We are ready now to work with binary weightings over the clone APy . At
first, instead of one big lemma we will prove several little ones to emphasize their
results in construction of lattice of binary weighted clones.

Now note that since binary part of the clone AFy; contains two projections
and three operations A, Cy, C;, then for each binary weighting there are n¥ = 25
binary superpositions.

Lemma 10. For every 0 < aj,a; < 1, 0 <t < 1 the weighting . , generates

both weightings wy ,, and w, .. and does not generate wy over the clone APy,.

Proof. Consider two superpositions:

wfhaQ [Co, Co] = —alCO — &200 + (&1 -+ a9 — 1)00 -+ (1 — t)CO -+ tCl =
= —tCy + tCh,
[C1,C1] = (1 —t)Cy — (1 —t)C.

t
walaQ

Therefore, in the weighting w/ ,, we can remove the positive weight from the

constant Cy, as well as from the constant C;. Indeed,

t
wo = Wt + 7wt [Ol, 01],

a1a2 a1az 1 . t aiaz
1—1
1 .t t
walag - walag + t w(llag [007 CO]
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To show that the weighting w/ ,, does not generate the weighting w, we have to
consider all other possible superposﬂuons of w! ,
sition w}, .. [m1, 7] and the superposition w! . [
on projections, there are two superpositions

,- There are the trivial superpo-
Ty, m1] which switches the weights

alag [Co, Cl] —a100 — CL201 + (CLl + a9 — 1)00 + (1 — t)CO —+ tCl =
((12 — t)C() + (t — ag)Cl,
01,00] (a1 —t)00+(t—a1)01,

Zlag[

which are still the weightings 6§ = —Cy + C or n = Cy — C1, multiplied by some
nonnegative constant, there are ten superpositions, 1 = 1, 2

bl mi) = —mi + (1 — £)Co + tCo,

a1a2[7Ti7 Co]l = —aym; — asCo + (a1 + az — 1)Cy + (1 — t)Cy + tC =
= —a1m; + (a1 — t)Co + tCY,

Z ,[Co, mi] = —agm; + (ag — £)Co + tCh,

Zlaz [m;, C1] = —a1m; — asCy + (a1 + ag — 1)m; + (1 — t)Cy + tC =
= —(1 —ag)m; + (1 —t)Co + (t — az)Cy,

Z 0 C1, ] = —(1 —a)m + (1 = 1)Co + (t — a1)CY,

w
w

which have the zero weights on A, there are five superpositions, 1 = 1, 2

wh gy [N A = = A +(1 = 1)Co + tCY,
wh o [mi Al = —armi + (a1 — 1) A +(1 — £)Co + Cy,
W o, (AT = —agm; + (a1 — 1) A +(1 — t)Co + tCY,

which have non-positive weights on A and positive weights on the constants and,
finally, there are four superpositions

[ | = —as A +(ay — t)Co + tCY,

[ | = —a1 A +(ag — t)Co + tCh,

b alCL N = =1 —a1) A+(1 = )Co + (t — a1)Ch,
[ = —(1—=ay)) AN+(1 —t)Co+ (t — as)Ch,

which have non-positive weights on A and (possibly) non-positive weight on the
one of the constants. As we can see, by any superposition we cannot get positive
weight on A (since aj,a; < 1) and cannot get negative weights on the both
constants Cjy, C at the same time. We only have the following seven combinations
of weights on constants: (1 — ¢)Cy + tCy, —Cy + Cy, Co — C4, (a3 — t)Cy + tCh,
(ag —t)Co+tCy, (1 —t)Co+ (t — a1)Cy and (1 —t)Co + (t — az)C,. For Wl ,, we
have W, . (Co) +w ,,(C1) =1 and for every binary operation f, g over the clone
APy we have wl . [f, 9](Co) + wam [f,g](C1) > 0. It implies that for any conical
combination of superpositions of W}, ,,, call it w, which contains sw! ,, [, mo], s >
0 (because we need w(A) > 0), we cannot get w(C’O) = w(C}) = 0, which means
that by any conical combination of superpositions of w}, , Wwe cannot get a proper
binary welghtmg with zero weights on the both constants and positive weight on
A. Therefore w) , - wa. O
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The immediate corollaries of the proof of Lemma [10| are the following:

Corollary 11. For every 0 <t <1,0<s <1 W) , — ws

ajaz*

Corollary 12. For every 0 <t <1 wClone(w}, ,,) = wClone(w ,,,Wa. q,)-

ajaz’ “raijaz

Proof. Tt will be sufficient to prove that there {w? , w! 31— w! . Indeed,

aijaz’ ~Caiaz ajag”

1, 1

2 —
Waraz = §Wa1a2 + §wa1a27
1
and since by Corollary 11| wé e, — Wi, ,,, We are done. ]

Corollary 13. For every 0 <t <1, w} ,, — wiy and wiy — w o, wi,.

Corollary 14. Letw) ,, be a normed (possibly improper) weighting over the clone

APy such that 0 <t <1 and let

P = {(ah a2>t)7 (a27 CLlﬂf)a (ala Oa t)a (07 alat)7 (a27 Oat)a (07 a27t)7
(1,0,1), (0,1,1), (0,0,1)}.
Then

1. For each point (ay,al,t') € P there exist binary operations f, g from NPy such
that W} .. [f, g] is a positive multiple of wg,la,z.

2. For each binary operations f,g from APy, ) . [f,g] is either the zero wei-
ghting, or a positive multiple of the weightings 0 = —Cy + C1, n = Cy — C4, or a
positive multiple of wf;,laé, where (a}, a,t") € P.

Lemma 11. If 0 < t < 1 and at least one of two coefficients ay,as is greater
than 1, then w! . generates the trivial weighted clone Wyp,, .

Proof. Assume that a; > 1. Consider conical combination

(1—1)
Wh 4y ; w[Co, Co] = wy 4,-
The claim now follows from Lemma [7] m

Corollary 15. Let w be a proper k-ary weighting over the clone NPy,. Assume
that w(C1) # 0 and there ezists a nonempty set of coordinates I C {1,...,k} such
that

Z w(/\j) < —(W(C()) +M<Cl>>.

0+JCI

Then w generates the trivial weighted clone Wp,,
Proof. The claim follows from Lemma [I1] and Corollary o] O

The proof of the following lemma is based mostly on Lemmas [4] [7] in sections
3.1 and 3.2.

Lemma 12. For every nonnegative rationals ai, as, by, bs, c1,co,t such that a; +
as > 1, by,ba,c1,00 <1,b1+by>1,¢c1+c>1,0<t<1 the following is true
over the clone NPy :

36



(1) wy — P —>w10, —>w10,

aja’ a1a2 a1a2
0 .
aijaz’

(2) if t #0, then w°

t 0
> ujble, w

0
aray 7 Wh, Wig 7 W

aiaz

¢ 1 1 0 .
(8) if t # 1, then wl ., =+ W} 4, We ey = Wa, Wi = Whpy:

(4) if t #0, then wx - W'

ajaz”

Proof. We do not need to prove the relation —, because we did it in Lemmas
M [7] To prove the other items we have to consider additional superpositions for
each weighting and show that even by them we will not get new weightings. Note

; 0 0 1 0 i
that the relations wy y = wy, 4y, Wi o = Wy, are trivial.

(2) There are nine new superpositions of w?  ~ with constant C;. There are

three superpositions

aija2

a1a2 [C1, Ch] = =C1 + Cy,
[CQ, Cl] = —a100 — agCl + (a1 + a9 — 1)00 + Co = —a201 + (LQCO,
[C1, Co] = —a1Cy + a1 Cy,

a1a2
a1a2

which are the weighting n = Cy — 4, multiplied by some nonnegative
constant, and there are six superpositions, i = 1, 2

Waya,|C1, i) = =10y — apm; + (ay 4 ag — 1)m; + Cp = (a1 — 1)1 — a1Cy + Cy,
ngaQ (73, C1] = (a2 — 1)m; — aaCy + Co,

walaz [C1,A] = —a1C1 —ag A +(a1 +az — 1) A+Co = (a1 — 1) A —a1Cy + Cp
wd o, N, Ci] = (a3 — 1) A —axCy + C.

Thus, we still cannot get rid of the positive weight on the constant Cy and
therefore w® - wm and cannot get positive weight on the constant Cf,

ajas
0
therefore wy ,, = W 4,-

(3) There are nine new superpositions of w, ., with constant Cy. There are three
superpositions

Co, Co] = —Cy + C1,

0162 [Co, C1] = —c1Cy — 2Cy + (1 + e — 1)Co + C =
— (1 —2)Co+ (1 — ),

[C1,Col = —(1 —¢1)Co + (1 — ¢1)C4,

0102[

C102

which are the weighting n = C; — Cjy, multiplied by some nonnegative
constant (since 0 < ¢1, ¢y < 1), and there are six superpositions, i = 1,2

[Co,m;] = —c1Cy — cami + (c1 + 2 — 1)Co + O = —com; — (1 — ¢2)Coy + Cy
[, Co] = —c1m — (1 — ¢1)Co + C4

Co,N| = —c1Co — by A+(c1+ o —1)Co+ Cp = —ca A —(1 — ¢3)Co + C
=—c AN—(1—¢)C+ Ch.

6102
t
c1C2

clcz[
t
cic2

€& & &

As we can see, we cannot remove the positive weight from C and therefore

1

¢
We, e, # W, and cannot get positive weight on Cj, therefore w! ., - w} ;..
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(4) There are only two new superpositions of w, both with the constants Cp,
012
wa[Co, C1] = wa[Ch, Co] = Co — Cr.

t

Thus, we still cannot get positive weight on Cy and wx - wy ,, -

]

Corollary 16. For every proper binary weighting wy ,, over the clone APy with
t # 0 the following is true:

(1) wClone(wn,wh p,) = Wapy, s

(2) for every w21a2 such that at least one of the coefficients is greater than 1,

0 t _ .
w0l0n€(wala2 ) wblbg) - W/\P01 )

Proof. (1) It is enough to note that for ¢ = 1,2 the coefficients (b; +1) > 1.

(2) Assume that a; > 1. Then the conical combination

/ 1 0 ap — 1
WZ;bIQ = awalag a wlt;lbg =
a; — 1 as + ba(a 1
- p\ Yy b,
ai ai
b —1 b —1 1—1¢ t t —1
+(a2—i— 1(ar )+ ba(ay ))/\+CL1( ) + Co+ (a1 >Cl
aq aq aq

is proper normed weighting with ¢ # 0 and coefficients b/, b,, where b} =
(1+ bl(azi:l)) > 1. By Lemma w,filbé generates Wap,, . .

The next two corollaries follow from the previous Lemma [I2] and Lemmas [4]
and [7]

O . . . .
Corollary 17. Let w, ,, be a normed (possibly improper) weighting over the clone
NPy and let

P = {(ala az, 0)7 ((12, ay, O)a (ala 07 0)7 (07 ay, O)a (a27 07 0)7 (0, Az, 0)7
(1,0,0), (0,1,0), (0,0,0)}.

Then

1. For each point (a},ay,0) € P there exist binary operations f, g from NPy such
that wq, 4, [f, 9] is a positive multiple of wg,, .

. . 0 . . . .
2. For each binary operations f, g from AFPo1, w4, 1f, 9] is either the zero weighting

or a positive multiple of wg,lalz, where (a},a},0) € P.

1 . . . .
Corollary 18. Let w, ,, be a normed (possibly improper) weighting over the clone
APy and let

P = {(ah ag, 1)? (a27 arg, 1)7 (ab 0, 1)7 (07 ai, 1)7 (a27 0, 1)7 (07 ag, 1)7
(1, 0, 1), (O, 1, 1), (0, 0, 1)}

Then
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1. For each point (a),al, 1) € P there exist binary operations f, g from APy such
that wy ,,1f, 9] is a positive multiple of w;/la,.

2. For each binary operations f, g from NPyi, w} .. [f, 9] is either the zero weighting
or a positive multiple of wéll,lalz, where (a},al, 1) € P.

Now we are ready to prove the dual lemmas about the subsets of points M (W)
and binary weighted clones W (M). Since from Lemma we know, that for ¢t # 0
W0 4y 7 Wh gy Wa = Wh oo, and for 0 < by by <1, t# 1wy, = Whs Wiy, = Wa
we can split the proof of Lemma (13| into three cases: when M (W) lies in Q>0 ,
when M (W) lies in Q%', and otherwise.

Lemma 13. For every nontrivial binary weighted clone W over the clone APy
the set M (W) satisfies Property (xx).

Proof. (1) Assume that the binary weighted clone W does not contain nonzero
weightings with nonzero weight on the constant Cy. It means, that M (W) C
'52100. Due to Corollary (17| in that case we are in conditions of Lemma ,
and, as we have seen, in both cases (W does or does not contain a nonzero
weighting with zero weight on the constant Cy) M (W) satisfies Property

(*). Due to Definition [30} M (W) satisfies Property (x*) as well.

(2) Now assume that the binary weighted clone W contains only Weightings of
the form wj , with 0 < by, by < 1. It means, that M (W) C Q5. Due to
Corollary . we can use the same reasoning as in proof of Lemma and
will get that M (W) satisfies Property (x). Thus, M (W) satisfies Property

(3) Finally, otherwise, if M (W) € Q% and M (W) ¢ Q%', then M (W) conta-
ins some point (ay, as, t) with 0 < t < 1, which corresponds to the weighting
W), 4,- Indeed, if we assume, that M (W) C Q5 U QL' then according to
Definition [31| for every points (¢, ¢2,0) and (bl, by, 1) there exist proper bi-
nary weightings w”, el and wb, b, € W that generate the weightings w! . and
W, p,- Bven if r = O 3 = 1, since W is closed under nonnegative scaling and

1

sum of weightings, then the weighting w! .. = 20! .+ fwp, with ¢ =1 is

in W and therefore the point (a;,aq,t) € M(W).

If at least one of the coefficients a1, ap > 1, then w! , generate all weightings
over the clone APy, i.e. wClone(w! ,,) = Whp,. Hence the set M(W) is
equal to the whole Q% and satisfies (xx). Otherwise, we have to check that
M (W) satisfies all conditions (1), (2),(3),(4) in the definition of (xx).

We first prove that M (W) is convex. Again, as we did it in the proof of
Lemma [, consider any two points (a1, as,t), (bi, b, s) € M(W). Without
loss of generality we can assume, that 0 < ¢ < 1. According to Definition
there exist proper binary weightings szl'lag and sz'i y, € W such that

s’ s
w! ra, = wh 4, and Wity — Wiyby-

Note that for every 0 < al, az, 0 <t <1 the weighting w}, , by the super-
posrtlons W [7r1, 1], Wh, g, (T2, M) and Wl .. [A, A] generates the Weightings
wi o, Wo ; and wg o respectively, and due to Lemma generates both wl .,
and w! The last two weightings generate the weighting W1,0a w871, Wo.0

ajaz*
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and wio, W(l),p Wé,o respectively. By the transitivity all these weighting are
generated by the weighting wg,l o+ Since for every point (af,aly,t"), where
0 <af,ai, ] +ay <1and 0 <t < 1 there exist nonnegative rationals
si,4=1,...,6, where 3%, s; = 1 such that

"

e 0 0 0 1 1 1
Waray = S1W1 o + SaWg o + S3Wp 1 1 Sawi o + 5w 0 + S6wp 1

then w!, ., — wt, ,» and M (W) contains the whole prism with the vertices
1772 172

(1,0,0),(0,0,0),(0,1,0),(1,0,1),(0,0,1),(0,1,1).

Finally, if a1 + az > 1, by 4+ by > 1, then w} , ,w; ,, € Norm(WW). For every
r € [0, 1] the point

r(ay,ag, t)+ (1 —=7)(b1,be,s) = (ray+ (1 —r)by,ras+ (L —7)bg, 1t + (1 —1)s)

corresponds to the normed weighting

rt+(1—r)s _ t s
rai+(1—r)bi,ras+(1—r)ba — Twalaz + (1 - T)wblbg -

= —(ra; + (1 — r)by)m — (rag + (1 — r)by)ma+
+ (r(a1 +ag) + (1 —7r)(by + b)) — 1) A+
+(1=r(t+s)—95)Co+ (rt+ (1 —r)s)Ch.

Since W is closed under nonnegative scaling and sum of weightings, then
the weighting w:gf(ﬁf)bww ) € Norm(W) and therefore the point
(rag+(1—=7)by,rag+(1—r)be, rt+(1—r)s) € M(W). Together with the fact
that M (W) contains the prism with the vertices (1,0,0), (0,0,0), (0, 1,0),
(1,0,1),(0,0,1),(0,1,1) it follows that M (W) is convex.

Now it is sufficient to note that due to Corollaries[I4] [I7] [I§ and Lemma

for every (possibly improper) normed weighting W, ,, such that (ay,as,t) €

M(W), M(W) contains all the points (a}, ab,t'), where

ay,ay,t') € {(a1,as,t), (ag,a1,t), (a1, 0,t),(0,a1,t), (az,0,1),
0,as,t),(1,0,t),(0,1,%),(0,0,¢)} U{(ay, as,0), (as, as,0), (a1, 0,0), (0, a4, 0),
as,0,0),(0,as,0),(1,0,0),(0,1,0),(0,0,0), (a1, as, 1)} U {(az, a1, 1), (a1,0,1)
0,a1,1), (az,0,1),(0,a9,1),(1,0,1),(0,1,1),(0,0,1)}.

and therefore M (W) satisfies the conditions (2), (3), (4) in the definition of

]
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Figure 3.9: Illustration to Lemma [13]

Lemma 14. For every set M C Q% that satisfies Property (xx) W (M) is a
binary weighted clone. -

For every set M C Q%! that satisfies Property (¥x) and is contained in the
square with vertices (1,0,1), (0,0,1), (0,1,1), (1,1,1) the set of weightings W (M)
s a binary weighted clone.

For every set M ¢ Q5 U QL' that satisfies Property (xx) and is contai-
ned in the cube with vertices (1,0,0), (0,0,0), (0,1,0), (1,1,0), (1,0,1), (0,0,1),
(0,1,1), (1,1,1) the set of weightings W (M) is a binary weighted clone.

Proof. First, note that due to Corollaries [I7] and [I8 and Lemmas [6] and [9] we do
not need to prove first two items of the statement, because for planes Q% and
5! satisfying Property (#x) is the same as satisfying Property (x). -
Thus, we only have to prove the third item of the statement. Consider a proper
binary weighting w which is equal to

w = 1wl fi, g1] + rawa[fa, go] + .. A Trwn [ [, Tl

where 71,79, ..., 7, are nonnegative rationals, w,ws, ...,w, € W(M) and f;, g;,i =
1,..n are binary operations from the clone APy. According to Definition [32]
each w;,i =1, ...,n is of the form siwfjibi : (ag, bi,t;) € M, s > 0,a; +b; > 1, where
(a;,bi,t;) € M and 0 < ¢t < 1. By Corollaries [14] and for each binary

operations f;, g; from APy, wa [fi, 9:] is either the zero weighting, or a positive

multiple of the weightings § = —Cy+Cy, n = Co—Cy or wi%b{_, where (a}, bl,t.) € P.

17 71 T

Assume without loss of generality that Wff,.bi [fi, 9] for every i = 1,...,n is not the
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zero weighting. Therefore, after renumbering of weightings w;, ...,w, for some
m <nandz,y> > 0, we can rewrite w as

W= rlslklw T T rmsmkmw "y +2(Co—Ch) +y(=Co+ C1) =

(risik; + ... + rmsmkm)(plwa,ljb,l +...+ pmwa,mb;n) +
+ SB(CO — 01) + y(—Cg + 01) = swzb + 33(00 — 01) + y(—C’o + Cl),

where s = (r1s1k1 4+ ... + TmSmkm), (P14 .. +pm) =1, a = (pa) + ... +pnal,), b=
(p10) + ... + pwbl,), t = (p1t] + ... + pwt,,). Since M is convex, then (a,b,t) € M
and sw', € W(M). Since w is proper weighting, then the weights on the constant
are nonnegative, i.e.

O<st—aty=0<t— (LY,
S S
0<s(l—t)—aty=0<1—t—2+¥or T Y«
S S S S

Thus, the point (a,b,t’), where t' = ¢ — (7 — ¥), is still in M, and therefore the
weighting w = sw, is in M(W). According to Definition W (M) is binary
weighted clone over the clone AF. [

As in two previous sections we first formulate some results, that will help us
to construct the whole lattice of binary weighted clones over the clone AFy;.

Theorem 12. There are two nontrivial atomic weighted clones over the clone
/\P01 N

(1) The weighted clone szo, defined as follows: for every k
(Wi))* = {w € Wap, : foreveryI C{1,...k}s.t.|I| > 1,
w(Ar) =w(Cy) =0}.
Moreover, W{3° o is generated by the unary weighting w‘fp = —m + Cp.
(2) The weighted clone W{G', defined as follows: for every k
(Wff)l)k ={w € Whrp, : foreveryl C{1,...k}s.t. |I| >1,
w(/\;) = w(C()) = 0}
Moreover, WGt o is generated by the unary weighting wio = —m + C}.

There are the smallest weighted clone I/Vo<t<1 containing both Wfﬁ and WlO ,
defined as follows: for every k

(WP ={w € Wapy, : foreveryI C{1,...k}s.t.|I| >1, w(A;) =0}

1
Moreover, W0<t<1 is generated by the unary weighting wi, = —m + %C’o + %Cl.

Proof. For the first part of the theorem, note that the proof of the fact, that
WPy = wClone(w?,) and W}, = wClone(w; ), i.e. that WPy and W} are actu-
ally weighted clones and are generated by the Welghtings W(l),o and W%,o respectively,
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is the same as the corresponding part of the proofs of Theorems [6] [0l Thus, we
only have to show that these weighted clones are atomic (there are no smaller
weighted clones, contained in WRO or Wlljo), and there is no others atomic weigh-
ted clones, that is, every nontrivial proper weighting generates either both w%o
and W%,o or one of them. Indeed, for every k-ary and m-ary weightings 7 € WRO
and 0 € Wio superpositions

1 1
WT[Wf,---,Wﬂ :W?,o and —0[n]", ..., 7" :wio.
1

Xt 0(m)

Therefore, the weighted clones W7, W, are atomic. Next, consider an arbitrary
weighting wal a Ift=0o0rt=1, then, due to Lemmas {4 or , wfbwz generates
the Welghtmg w? o or the weighting W%,o respectively. If 0 < ¢ < 1, then, due to
Lemma |10} wf ,, generates both weightings w?’o and wio. Thus, there is no other
atomic weighted clones over the clone AFy;.

1
To prove the second part of the theorem we first show that W7, is a weighted
1 1 1
clone generated by wf, i.e. W7, = wClone(wfy). On the one hand, each k-ary
1

weighting w from W7 is of the form

W= —Qa17] — ATy — ... — QrTE + C()Co + chl =

—a1m — Gomy — ... — agT + coCo + (a1 + ag + ... + ax, — co)C =
1 1 1 1
al(—7r1 + 500 + 501) + ...+ ak(—ﬂ'k + *C() + *01)4—

1, 1,.&E
+§<Zaz>00 2(2% Cl Zaz—C0 Co—|— Zaz—co Cl
i=1 =1 =1 =1
1 1 k 1 k 1
aywiom] + agwy 0[7T2] + o apwi o] Z a;)wiolCh] + 2(2 — co)wi o[Co).
=1

=1

Jun

Therefore, Wéo C wClone(wiy). On the other hand, due to Lemma I for

every proper k-ary weighting w € wC’lone(wLo) there exist nonnegative ratio-
nals ay, ..., a, by for I C{1,...,k},|[I| > 1 and ¢, ¢; such that w is equal to:

1 1 1 1 1
w = aiwig[m] + .+ awiglm] + Y0 brwio[Ar] + cowfo[Co] + c1wio[Ch] =
1€{T )
[I|>1

1 1 1 1
ar(—m + 5(Jo + 5(JI) + .+ ap(—m + 5(JO + 5(Jl)+

1 1 1 1 1 1
+ Z b[(— /\[ +§Co + 501) + CO<_§C(] + 501) + 01(500 — 501) =

IC{1,...k}
[I|>1
— AT, — ... — QT — Z br A1 +
IC{1,...k}
[I]>1
Zaﬁ— Z by —co+ 1) Co+ Za,+ Z by + co — c1)Ch.
IC{1,....k} IC{1,....k}
[1]>1 [I]>1
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Since w is proper, we have bI = 0 for all I C{1,.. Kk}, |I| > 1. Thus every
k-ary Welghtmg w E wC’lone(wl o) is in WI o and wClone(wl 0) C Wl o- Therefore

wClone(wLo) W1 0-
Now suppose that there is a smaller Weighted clone W that contains both 1/} 0
and Wi 0 Then the weightings w{ y and w?, are in . But since : 2 (Wi +wh 0)

wl 0, then Wl ‘o © W and it is contradiction. O

Theorem 13. The nontrivial weighted clone over the clone APy that contains
all others nontrivial weighted clones consisting of weightings with zero weight on
the constant Cy, except the weighted clone Wy, is Wy, defined as follows: a
k-ary weighting w is in Weyzo if and only if for each nonempty set of coordinates
I C{1,....k} and for each nonempty set of coordinates T C {1,...,k} such that
T wlrk) < 0} £0,

@Z w(Ak) <0, (3.16)
£JCI
> w(nk) <o, (3.17)
0AJCT
w(Cy) = 0. (3.18)

Proof. The proof exactly coincides with the proof of Theorem [7], except for the
one point: we have to prove that for every weighting 7 € W, .o with any super-
position we cannot generate the positive weight on the constant C;. But it follows
immediately from transitivity of the relation — and the fact that we cannot get
positive weight on C} by any superposition of the weighting wn. O

Theorem 14. The nontrivial weighted clone over the clone APy that contains
all others nontrivial weighted clones consisting of weightings with zero weight on
the constant Cy, except the weighted clone Wy, is W<_¢,, defined as follows: a
k-ary weighting w is in W<_¢, if and only if for each j € {1,...,k} and for each
nonempty set of coordinates ) # K C I C{1,....k}

w(m;) <0, (3.19)
doowlhy) < YD wly), (3.20)
P£JICI 0£IJCK

w(Co) = 0. (3.21)

Proof. Again, the proof exactly coincides with the proof of Theorem [I0] ex-
cept for the one point: we have to prove that for every weighting 7 € W<_¢,
with any superposition we cannot generate the positive weight on the con-
stant Cy. Suppose that there exist a k-ary superposition w = 7[fi,..., fn] of
T = Ypzrcii,...my TIAF) AT +cCy € W2 such that w(Cp) > 0. We know that

w(Co) = T[f1, s fm](Co) = > (A >0,

I'c{1,...m}
I'n{j:f;=Co}#0

denote {j : f; = Cy} = K. But

> T(Ap) = > w(Ag) - > w(Ay) <0,

I'c{1,..,m} 0£JC{1,....m} 0£IC{1,...;m\K
I'NK#D
since 7 satisfies condition (3.20). This is a contradiction and we are done. O
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Theorem 15. There are two mazimal weighted clones over the clone APy, :

(1) the weighted clone W, that contains all others weighted clones of weightings
with zero weight on the constant C1, defined as follows: a k-ary weighting w
is in Wy if and only if w(C1) = 0 and for each nonempty set of coordinates
IC{1,.. ,k}

> w(ny) <0. (3.22)
0£JCI
Moreover, W, is generated by the weighting wx = —m1 — o + 2A;

(2) the weighted clone Weyzouc, 20 defined as follows: a k-ary weighting w is in
Wegzoucizo of and only if for each j € {1,...,k} and each nonempty set of
coordinates ) # K C 1 C{1,...,k}

w(m;) <0, (3.23)

Z w(/\J) S w(AJ). (324)
0A£JCI 0#£JCK

Proof. We only prove the second part of the theorem, because the first part follows
immediately from Theorem [6| and Corollary [16]
At first, we prove an auxiliary statement.

Claim 2. A k-ary weighting w is in Weyzouc20 if and only if for each binary
operations gi, g, -, gr from (APy1)? a weighting ¢ = w[g1, ga, -, gr] for i = 1,2
satisfies condition

—p(Ch) — o(Cy) < o(m;) < 0. (3.25)

Proof of Claim 2. Consider an arbitrary k-ary weightings w € Wey2ouc, 20 and
the superposition ¢ = wlgy, go, ..., gx|, Where g1, 9s,...,gx € (APs1)?. There are
five binary operations containing in (APy;): the two projections 7y, w2, the meet
operation A and the constant operations Cy, Cy. Let T, = {j : g; = Co}, Te, =
{j:9;=C1}, Tr, ={j : g = m}. Note that

o(m;) = oo wla)= Y wlhg)— > w(ny) L0,
0£JC T, UTs,, 07 CTe, UTs, 0£JCT,
JAT £0

since w satisfies condition (3.24) and

¢(Co) = Z w(/\J) -+ w(C(]> =

0£JC{L,....k},
JOTC(J#@
= S w(Ay) - > w(Ay) +w(Cy),
0£IC{1,....k} 0#£JC{L,...kN\Tc,
o(C1)= > w(iry)+w(C)
0#£JCTc,
Therefore,
o(mi) +6(Co) +6(C1) = > wlh)— D wA)+
@#JQTCIUTﬂ—i @#JQTCI
+ > wlAg) - > w(Ag) +w(Co) +w(Cr)+ > w(Ay).
0£JC{L,....k} 0£JC{L,..k\Tc, 0£JCTe,
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Note that w(Co) +w(Ch) = — Xgrscqr,. i W(As) and T, UTy, CH{L, .. k}\ To,.
Then

o(mi) + ¢(Co) + ¢(Ch) = o wAg) - > w(Ay) =0,

0#JCTc, UTx, 0#£JC{1L,...kN\Tc,

again since w satisfies condition (3.24). Thus, ¢ satisfies conditions (3.25).
On the other hand, assume that proper weighting w is not in w € Weyoue, 0-
If w violates condition (3.23), then there exists j € {1, ..., k} such that w(m;) > 0.
Then the superposition
¢ = wlmy, 1, .. T, .y T

with the second projection on the j-th coordinate violates condition (3.25), since
¢(my) > 0. If w violates condition (3.24), then there exist two nonempty sets
0 # K C 1 C{l,..k}, such that Yy ;crw(As) > Xgricr w(As). Without
loss of generality we can assume that K = {1,....,p}, I = {1,...,p + ¢} for some
0 < p,t. Then superposition

gb == W[Cl, cevy Cl,’ﬂ'l, ...,7T1,g(p+t+1), 7gm]
———— Ht,_/
p

violates condition (3.25), since

gb(’ﬂ'l) = Z (U(/\J) — Z CU(/\J) > 0.

®¢JQ{17"7(p+t)} ®¢JQ{17"7P}

Let us prove that We,zouc, 20 is a weighted clone. We,zouc, 20 is closed under
conical combinations of weightings, thus, we only have to prove that W, zouc, 0
is closed under proper superposition. But it is an easy consequence from Lemma
2l Therefore, We,y4ouc, 20 is a weighted clone.

It remains to prove that Weyzouc, 20 is maximal. Suppose that there exist
nontrivial weighted clone W containing W, 2ouc, 0. Since W # Wegzouc 20, then
W contains nonzero k-ary weighting w that violates conditions (3.23), (3.24). If w
violates condition (3.23), then W = W,p,, and it is contradiction. Suppose that
w violates condition (3.24), there exist two nonempty sets ) = K C I C {1, ..., k},
such that g, ;c;w(As) > Ygrscx w(Ag), K ={1,....p}, I ={1,...,p+t}. The
conical combination

0 = w[Ch,...,C1, o, oo, Moy T(ptt41)s oo T
— N —

p t

has a positive weight on the projection 75, but might have a negative weight on
the constant C;. We can fix it by the following way. Note that the weighting
wio = —m + Cl is in WCO;AOUCl;éO‘ Since Wco?ﬁouc’l#o g W, then wio e W. Now
consider a conical combination

8/:W[CI)"‘701)7T27"'77T277T(p+t+1))"‘77rm] + ( Z W(/\J)"‘W(Ol))w&l,
P t Q);éjg{l ----- p}

which is proper and has a positive weight on the projection my. Thus W = Wy p,,,
and it is contradiction. Therefore, We,20uc, 20 15 maximal.
O
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We are finally ready to formulate the theorem that describe all binary weighted
clones over the clone APy, .

Theorem 16. Fvery nontrivial binary weighted clone over the clone APy is
either BP(W,) or is equal to W (M) for some M such that:

(1) M € QLY and satisfies Property (xx) or

(2) M C QL' is contained in the square with vertices (1,0,1),(0,0,1), (0,1,1),
(1,1,1) and satisfies Property (xx) or

(3) M C Q3 is contained in the cube with vertices (1,0,0),(0,0,0), (0,1,0),

(1,1,0), (1,0,1), (0,0,1),(0,1,1),(1,1,1) and satisfies Property (xx).

For every such set M W(M) C BP(W,) if and only if M C Q5. For every
two such sets M, M' W (M) C W(M') if and only if M C M'.

There is continuum many binary weighted clones. These binary weighted clo-
nes are generated by different (infinite) sets of normed binary weightings.

Proof. Consider an arbitrary binary weighted clone W. We know that every non-
zero binary weighting with the zero weights on the both constants Cy, C'; gene-
rates wx. Thus, if W contains w, then W is the binary part of W,. Therefore,
it is sufficient to consider an arbitrary binary weighted clone W over the clone
APy, that contains only binary weightings with nonzero weight on the constants
(except the zero weighting).

Due to Lemma [13] the set M (W) satisfies (xx). If W contains only binary
weighting with nonzero weight on the constant Cj and zero weight on the con-
stant Cy, then M (W) C Q%. From Lemma [11| we know that if W contains the
weighting w such that, being normed, has coefficient 0 < ¢t < 1 and at least one of
two coeflicients ay, ay greater than 1, then W is a binary part of W, p,,. Therefore,
it is sufficient to consider a binary weighted clone W, that contains only binary
weighting w with nonzero weight on the constant C; and zero weight on the
constant Cj such that, being normed, have coefficients a1,a, < 1, and a binary
weighted clone W, that contains binary weighting w such that w(Cy) +w(Cy) > 0
and w, being normed, has coefficients ay, az < 1. In first case M (W) C Q% and is
contained in the square with vertices (1,0, 1), (0,0, 1), (0,1,1),(1,1,1), and in the
second case M (W) C Q3 is contained in the cube with vertices (1,0, 0), (0,0, 0),
(0,1,0), (1,1,0),(1,0,1),(0,0,1),(0,1,1), (1,1, 1).

We have to prove now that in the all these cases W (M (W)) = W. Consider
an arbitrary nonzero binary weighting w € W. Since w(Cy) + w(C1) # 0 then

t

W = SW,,, for some nonnegative rationals s, aj,az, 0 < ¢ < 1 and therefore

(a1,as,t) € M(W). But since w is proper then a; +ay > 1 and thus w = sw' , €

aiaz

W (M (W)). On the other hand, according to Definition [32 each binary weighting
w € W(M(W)) is proper and of the form sw! , for some s > 0 and (ay, as,t) €

aija2

M(W), where a; +az > 1, 0 < t < 1, which implies that w! € Norm(WW).

ajas
Since W is closed under nonnegative scaling, then w = sw! € W. Therefore,

W(M(W)) = W. o

To prove the rest note that BP(WW,) contains all other binary weighted clones
with zero weight on the constant C; and M (BP(W,)) is the whole Q. From
Corollary [I6 we know, that if W contains both a nonzero weighting with zero
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weight on the constant C; and a nonzero weighting with positive weight on the
constant C, then W is the binary part of the trivial weighted clone AP;. Hence,
if M C Qt;)l then W (M) is incomparable with BP(W,). Finally, from Lemma
we know, that if M ¢ Q% and M ¢ Q' then M intersect with Q% and due
to Lemma [14{ W (M N ngoo) is a weighted clone. Finally, note that if M C M’,
then W (M) C W(M') directly from the definition of W (M). Otherwise, if there
exist a point (a1, as,t) € M such that (aq,as,t) ¢ M’, then, for every s > 0, the
weighting sw! . is in W (M) but not in W (M'). Therefore W(M) € W(M'). O

To illustrate the lattice of binary weighted clones over the clone AFy we

introduce the following notation. Given a binary weighting in normed form w! ,,

we denote the binary weighted clone generated by this weighting by WI=0 " if

aiaz’

t =0, by W=l "if t = 1 and W25!<! otherwise (Given a set of binary weightings

aiaz’ aiaz

in normed form W}, , , wj ;. , ... we denote the binary weighted clone, generated
by those weightings by WiZo , - Wi=L o and WPSIS!  respectively).
IBI)(IaiNfbl>

BP(W,)

BP(Wey20)

£0UC1£0)

BP(W]7°) e BP(W<_¢,)

(WisL)

aiaz

BP(Wig") BP(W/g')

BP (W)

Figure 3.10: The lattice of binary weighted clones over the clone AFy;.
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The dual clone V Fy; has the similar structure: in all claims we just switch the
constants Cy to C] and vise versa.

Corollary 19. There are two nontrivial atomic weighted clones over the clone
\/P01 N

(1) The weighted clone Wﬁo, defined as follows: for every k
(Wffoo)k ={w e Wyp, : foreveryl C{1,....k}s.t. |I| >1,
w(\/[) = CU(CH) = 0}
Moreover, Wf;o is generated by the unary weighting w?}o = —m + Cp.
(2) The weighted clone Wfﬁl, defined as follows: for every k
(Wioh* = {w € Wyp, : foreveryI C{1,...k}s.t.|I| > 1,
W(\/]) = W(CO) = O}
Moreover, ijl is generated by the unary weighting wio =-—m + C.

There are the smallest weighted clone W§'<! containing both W{5° and WG,
defined as follows: for every k

(WIOEKI)]“ ={w e Wyp, : foreveryl C{1,...k}s. t.|I| >1, w(Vy)=0}.

1
Moreover, Wﬂgtd is generated by the unary weighting wi, = —m + %C’o + %C’l.

Corollary 20. The nontrivial weighted clone over the clone V Py, that contains
all others nontrivial weighted clones consisting of weightings with zero weight on
the constant Cy, except the weighted clone W\, is Wy, defined as follows: a
k-ary weighting w is in We, 2o if and only if for each nonempty set of coordinates
I C{1,....k} and for each nonempty set of coordinates T C {1,...,k} such that
TNn{j:wxh) <0} #0,

@Z w(Vh) <0, (3.26)
£JCI

> w(VE) <o, (3.27)
0AJCT

w(Cy) = 0. (3.28)

Corollary 21. The nontrivial weighted clone over the clone V Py that contains
all others nontrivial weighted clones consisting of weightings with zero weight on
the constant C, except the weighted clone Wy, is W<_¢,, defined as follows: a
k-ary weighting w is in W<_¢, if and only if for each j € {1,...,k} and for each
nonempty set of coordinates ) # K C I C{1,....k}

w(m;) <0, (3.29)
doow(vy) < YD wlvy), (3.30)
PAJCI P£JCK

w(Cr) = 0. (3.31)
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Corollary 22. There are two maximal weighted clones over the clone V Py :

(1) the weighted clone W, that contains all others weighted clones of weightings
with zero weight on the constant Cy, defined as follows: a k-ary weighting w
is in W\ if and only if w(Cy) = 0 and for each nonempty set of coordinates
IC{1,.. k}

> w(vy) <0. (3.32)
0£JCI

Moreover, W\, is generated by the weighting wy, = —m; — o + 2V;
(2) the weighted clone Weyzouc, 20 defined as follows: a k-ary weighting w is in

Weytoucy 2o if and only if for each j € {1,...,k} and each nonempty set of
coordinates ) # K C I C {1,....,k}

w(m;) <0, (3.33)
doowve) < DD w(vy). (3.34)
PA£JCI 0£JCK

Corollary 23. Every nontrivial binary weighted clone over the clone V Py s
either BP(W\)) or is equal to W (M) for some M such that:

(1) M C Q%' and satisfies Property (xx) or

(2) M C Q% is contained in the square with vertices (1,0,1),(0,0,1), (0,1,1),
(1,1,1) and satisfies Property (xx) or

3) M C Q3 is contained in the cube with vertices (1,0,0),(0,0,0), (0,1,0),
>0
(1,1,0), (1,0,1), (0,0,1),(0,1,1),(1,1,1) and satisfies Property (xx).

For every such set M W(M) C BP(W,) if and only if M C Q. For every
two such sets M, M'" W (M) C W (M) if and only if M C M.
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Conclusion

In this thesis, we introduced the concept of binary weighted clones and characte-
rized all binary weighted clones and some particular weighted clones over certain
clones on Boolean domain, namely AFy, APy, APy and dually VF,, VP, VF.
However, a complete description of all weighted clones remains widely open.

We believe that partial description of weighted clones over the clones AF, and
AP, is possible by using the approach of this thesis.

For richer clones, e.g. M P, M Fg°, M P, more sophisticated methods seem

to be necessary.
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