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Introduction
The theory of CSP provides an universal apparatus and a simple formal fra-
mework for the representation and solution of a wide range of natural combina-
torial problems.

The constraint satisfaction problem (CSP) is a computational problem that is
in finding an assignment of values to a set of variables, such that this assignment
satisfies some specified feasibility conditions. Feasibility conditions of CSP can
be parametrized by a set of relations on a suitable domain, so called constraint
language. It turns out (see [1]) that instead of vast variety of languages, one can
consider CSPs over larger sets of relations, those containing the binary equality
relation and closed under primitive positive definitions (so called relational clo-
nes), since such a closure does not increase the complexity of CSP problems.
Moreover, it was proved by Geiger [2] and V.G. Bondarchuk et al. [3] that there
is a one-to-one correspondence between relational clones and sets of operations
called function clones, or simply clones, so one can represent and describe any
relational clone using operations. This alternative way is very useful, since, for
example, all the clones on the Boolean (i.e., two-element) domain are known from
the work of E. Post [4].

The generalization of CSP problem, that includes optimization problem, is
valued constraint satisfaction problem (VSCP) [5], D. A. Cohen, M. C. Cooper,
P. Creed, P. G. Jeavons and S. Živný [6] introduced the concepts of weighted
relational clones and weighted clones, that for VCSP play the same role as relati-
onal clones and clones for CSP, and proved a one-to-one correspondence between
these structures.

Although the complexity of VCSP is now fully understood [7], the structure
of weighted clones on the Boolean domain is far from being well understood. The
first systematic steps in this direction were made by Jiří Vančura in his thesis [8].
He presented a complete classification of weighted clones over all minimal clones
of the Post lattice.

In this thesis we continue in the effort to characterize weighted clones over the
clones of the Post lattice. We introduce a concept of binary weighted clones and
give a full description of the binary weighted clones over the clones generated by
one of the semilattice operations and one or two of the constant operations. To
obtain this result we employ a correspondence between binary weighted clones
and certain convex sets in a 2-dimensional or 3-dimensional vector space over
the rationals. We also give a complete classification of all atomic and maximal
weighted clones over these clones.

2



1. Clones
In this chapter we describe the constraint satisfaction problem (CSP) and explain
the correspondence between such problems and clones. Some definitions, examples
and results are adapted from [1], [8], [9] and [10].

1.1 CSP and Relational clones
Notation 1. For any set D and any natural number n, we denote by Dn the set
of all n-tuples of elements of D. Any subset of Dn is called an n-ary relation over
D. The set of all finitary relations over D is denoted by RD.

Definition 1 (CSP). An instance of the constraint satisfaction problem (CSP)
is a triple P = (V,D,C) with

• V a nonempty, finite set of variables,

• D a nonempty, finite domain, i.e. set of values,

• C a finite set of constraints, where each constraint is a pair c = (x,R) with

– x a n-tuple of distinct variables, called the scope of c, and
– R an n-ary relation on D, called the constraint relation of c.

The decision problem for CSP asks whether there exists a solution to P , that is,
a function f : V → D such that, for each constraint c = (x,R) ∈ C, the tuple
f(x) belongs to R.

In a fixed-template CSP we fix a domain and a set of allowed constraints.

Definition 2. A constraint language Γ is a set of relations on a finite set D. The
constraint satisfaction problem over Γ, denoted CSP(Γ), is the subclass of the
CSP defined by the property that any constraint relation in any instance must
belong to Γ.

Various combinatorial problems can be expressed in terms of CSP over a
suitable language.

Example 1 (3SAT). An instance of the standard NP-complete problem [11],
3SAT, is a Boolean formula in conjunctive normal form with exactly three literals
per clause. For example, the formula,

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5 ∨ ¬x1) ∧ (¬x1 ∨ ¬x4 ∨ ¬x3)

is a satisfiable instance of 3SAT. (Any assignment making x1 and x2 false, satis-
fies φ.) 3SAT is equivalent to CSP(Γ3SAT ), where D3SAT = {0, 1} and Γ3SAT =
{Sijk : i, j, k ∈ {0, 1}}, where Sijk = {0, 1}3 \ {(i, j, k)}.

For example, the above formula φ corresponds to the following instance of
CSP(Γ3SAT )

P = (V = {x1, x2, x3, x4, x5}, D = {0, 1},
C = {((x1, x2, x3), S010), ((x4, x5, x1), S101), ((x1, x4, x3), S111)}).
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Example 2 (Graph Unreachability). An instance of Graph Unreachability con-
sists of a graph G = (V,E) and a pair of vertices, v, w ∈ V . The question is
whether there is no path in G from v to w.

Graph Unreachability can be expressed as the constraint satisfaction problem
instance CSP(ΓGU), where DGU = {0, 1} and ΓGU = {={0,1}, C0, C1}, ={0,1} de-
notes the equality relation over the set {0, 1} and C0, C1 are constants.

In order to analyze the complexity of CSP instead of the constraint language
it is more convenient to use the relational clones, since they considerably reduces
the variety of languages to be studied. Relational clones are defined as follows.

Definition 3 (Relational clone). A set of relations Γ ⊆ RD is a relational clone
if it

1. contains the binary equality relation,

2. is closed under primitive-positive definitions, i.e. relations defined by relati-
ons from Γ, conjunction and existential quantifier are in Γ.

Example 3. Let Γ be a relational clone and R1, R2 be a binary and a ternary
relations from Γ. Then the ternary relation

S(x1, x2, x4) = (∃x3)(R1(x1, x3) ∧R2(x2, x3, x4) ∧ (x1 = x4))

is also in Γ [8].

Since the set of all relations RD is a relational clone and intersection of any
set of clones is a clone we can define closure operator.

Definition 4 (Closure operator). For any set of relations Γ ⊆ RD we define
RelClone(Γ) to be smallest relational clone that contains Γ.

It is obvious that we can get the relational cloneRelClone(Γ) from Γ by adding
to Γ all relations that one can define with relations in Γ using pp-definitions.

Example 4. Consider the Boolean constraint language Γ = {R1, R2}, where
R1 = {(0, 1), (1, 0), (1, 1)} and R2 = {(0, 0), (0, 1), (1, 0)}. It is straightforward
to check that every binary Boolean relation can be expressed by a pp-formula
involving R1 and R2. For example, the relation R3 = {(0, 0), (1, 0), (1, 1)} can
be expressed by the formula R3 = (∃y)(R1(x, y) ∧ R2(y, z)). Hence the relational
clone generated by Γ, RelClone(Γ), includes all 16 binary Boolean relations. In
fact it can be shown that RelClone(Γ) consists of precisely those Boolean relations
(of any arity) that can be expressed as a conjunction of unary or binary Boolean
relations [9].

The following theorem shows why we can consider relational clones instead of
constraint languages.

Theorem 1. Let Γ and Σ be finite constraint languages with the same finite
domain such that RelClone(Γ) = RelClone(Σ). Then CSP(Γ) and CSP(Σ) are
polynomial-time equivalent.

In other words, the replacing languages with relational clones does not increase
the complexity of problem.
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1.2 Clones
For many relational clones it is very hard to describe their structure in terms of
relations. However, it turns out that one can represent and describe any relational
clone using operations.

Definition 5. For any domain D and any natural number n a mapping f : Dn 7→
D is called an n-ary operation on D.

Notation 2. For any finite domain D we denote by OD the set of all operations
over D. For a natural number k we denote by Ok

D ⊆ OD the set of all k-ary
operations over D.

Notation 3. Let i ≤ k be a natural number. We denote by πki the k-ary projection
on the i-th coordinate, i.e., πki (x1, ..., xk) = xi. When there can arise no confusion,
we will denote i-th projection simply by πi.

Notation 4. For any k-ary operation f ∈ Ok
D and any m-ary operations g1, ..., gk

∈ Om
D we denote by f [g1, ..., gk] ∈ Om

D the superposition of f with g1, ..., gk, i.e.:

f [g1, ..., gk](x1, ..., xm) = f(g1(x1, ..., xm), ..., gk(x1, ..., xm)).

Definition 6 (Clone). A set of operation O ⊆ OD is a clone if it contains all
projections and closed under superposition, i.e. for a k-ary operation f ∈ O and
m-ary operations g1, ..., gm ∈ O the superposition f [g1, ..., gk] is in O as well.

Example 5. The set of all operations OD over any finite domain D is a clone.
Intersection of any set of clones is a clone again.

Definition 7 (Closure operator). For any set of operation O ⊆ OD we define
Clone(O) to be the smallest clone containing O.

Example 6. Let D = {0, 1}, O = {∧}, then

Clone(O) =

f : (a1, ..., an) 7→
∧

i∈I,∅6=I⊆{1,...,n},n∈N+

ai


Definition 8 (k-ary part of a clone). Let C ⊆ OD be a clone and let k be a
natural number, we define the k-ary part C k of C as a set of all k-ary operations
in C .

Example 7. Let D = {0, 1} and UD = Clone({¬}), i.e. UD is a clone generated
by the unary negation operation. The k-ary part of this clone contains exactly 2k
operations: k projections πki , i = 1, ..., k and k negations of projections, ¬ki , i =
1, ..., k.

We now define the fundamental correspondence between relations and ope-
rations.

Notation 5. For any domain D, for any k-ary operation f and any collection
of n-tuples ā1, ..., āk ∈ Dn, where āi = (a1i, ..., ani) we denote by f(ā1, ..., āk) the
n-tuple (f(a11, ..., a1k), ..., f(an1, ..., ank)).
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Definition 9 (Polymorphism). We say that k-ary operation f ∈ OD preservers
an n-ary relation R ∈ RD (or f is a polymorphism of R, or R is invariant under
f) if f(ā1, ..., āk) ∈ R for all choices of ā1, ..., āk ∈ R.

For any given sets Γ ⊆ RD and O ⊆ OD let

Pol(Γ) = {f ∈ OD| f preserves each relation from Γ},
Inv(O) = {R ∈ RD| R is invariant under each operation from O}.

The operators Pol and Inv form a Galois correspondence between RD and
OD. Actually, relational clones and clones are exactly the closed sets given by
this Galois correspondence. The following theorem allows us to work with clones
instead of relational clones [2], [3].

Theorem 2 (Galois Connection for Constraint Languages).
1. For any finite D, and any Γ ∈ RD, Inv(Pol(Γ)) = RelClone(Γ).
2. For any finite D and any O ⊆ OD, Pol(Inv(O)) = Clone(O).
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2. Weighted clones
In this chapter we describe a generalization of CSP, valued constraint satisfaction
problem (VCSP), that includes optimization problem. Then we define weighted
relational clones and weighted clones, which can be used to determine complexity
of VCSP problem in the same way as relational clones and clones are used for
CSP problem. Some definitions, examples and results are adapted from [8], [10]
and [5].

2.1 VCSP and Weighted relational clones
Definition 10 (Weighted relation). For any domain D and any natural number
n a function R : Dn 7→ Q ∪ {∞} is called cost function, or weighted relation on
D of arity n.

Weighted relation associates a rational weight with each of the tuples in some
subset of Dn. We denote by wRD the set of all weighted relations on D.

Definition 11 (VCSP). An instance of the valued constraint satisfaction problem
(VCSP) is a triple P = (V,D,C) with

• V a nonempty, finite set of variables,

• D a nonempty, finite domain,

• C a finite set of constraints, where each element of C is a pair c = (x,R)
with

– x a n-tuple of distinct variables, called the scope of c, and
– R an n-ary weighted relation on D called a constraint relation.

An assignment for P is a mapping s : V 7→ D. The cost of an assignment s,
denoted CostP(s), is given by the sum of the weights assigned to the restrictions
of s onto each constraint scope, that is,

CostP(s) :=
∑

((x1,...,xn),R)∈C
R(s(x1), ..., s(xn)).

If R(s(x1), ..., s(xn)) is undefined for some x = (x1, ..., xn) (i.e. if the CostP(s) is
+∞), then the assignment s is said to be infeasible and CostP(s) is undefined.
A solution to P is a feasible assignment with minimal cost.

Definition 12. A valued constraint language Γ is a set of weighted relations on a
finite set D. The valued constraint satisfaction problem over Γ, denoted VCSP(Γ),
is the subclass of the VCSP defined by the property that any constraint relation
in any instance must belong to Γ.

Example 8 (Minimum Vertex Cover). The Minimum Vertex Cover problem asks
for a minimum size set W of vertices in a given graph G = (V,E) such that each
edge in E has at least one endpoint in W . Let D = {0, 1}. We define
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R1(x, y) :=
{

+∞, if x = y = 0,
0, otherwise

R2(x) :=
{

0, if x = 0,
1, if x 6= 0

We denote by ΓMIN−V C the constraint language {R1, R2}. A minimum vertex
cover in a graph G with set of vertices V = {x1, ..., xn} corresponds to the
set of vertices assigned the value 1 in some minimum cost assignment to the
VCSP(ΓMIN−V C) instance defined by

CostG(s) :=
∑
xi∈V

R2(xi) +
∑

(xi,xj)∈E
R1(xi, xj).

The binary constraints ensure that in any minimal cost assignment at least one
endpoint of each edge belongs to the vertex cover.

Note that if we restrict wRD to only weighted relations with values {0,+∞},
we get CSP problems. Thus, VCSP includes CSP and is actually a generalization.

Now we define a weighted relational clone.

Definition 13 (Weighted relational clone). A set of weighted relations Γ ⊆ wRD

is a weighted relational clone if it

1. contains the weighted equality relation (weighted binary relation =w that
is 0 if the two values are equal and ∞ otherwise),

2. is closed under nonnegative multiplication and addition of constant,

3. is closed under sum of relations and minimization over arbitrary arguments.

We say that valued language Γ is closed under expressibility.

Example 9. Let R1, R2 be a binary and a ternary weighted relations from a
weighted relational clone Γ, let a1, a2 be nonnegative rational numbers and let b
be a rational number. Then the weighted ternary relation

S(x1, x2, x4) = min
x3

(a1R1(x1, x3) + a2R2(x2, x3, x4) + (x1 =w x4) + b)

is also in Γ [8].

Definition 14 (Closure operator). For any set of relations Γ ⊆ wRD we define
wRelClone(Γ) to be the smallest weighted relational clone that contains Γ.

Again, as in case with constraint languages and relational clones, to investigate
a complexity of VCSP problem over valued constraint language it is sufficient to
consider weighted relational clone generated by this language.

Theorem 3. Let Γ and Σ be finite valued constraint language with the same
finite domain such that wRelClone(Γ) = wRelClone(Σ). Then VCSP(Γ) and
VCSP(Σ) are polynomial-time equivalent.
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2.2 Weighted clones
Definition 15 (Weighting). We define a k-ary weighting of a clone C to be a
function ω : C k → Q such that ω(f) < 0 only if f is projection and∑

f∈Ck

ω(f) = 0. (2.1)

We call the value ω(f) the weight of ω on f .

We denote by WC the set of all weightings of C and by Wk
C the set of k-ary

weightings of C .
Remark 1. Since a k-ary weighting ω is simply a rational-valued function that
satisfies certain inequalities, scaling ω by nonnegative rationals and summing ω
with another k-ary weighting τ of the same clone gives a new weighting of that
clone.
Remark 2 (Weighting as a linear combination). We will view a k-ary weighting
ω of a clone C as a linear combination of k-ary operations f1, ..., fn of that clone:

ω = ω(f1)f1 + ω(f2)f2 + ...+ ω(fn)fn.

for brevity, we will sometimes omit operations with zero weight in such combi-
nation.
Remark 3 (Improper and proper weighting). We will also work with functions
ω : C k → Q that satisfy the zero sum condition but assign negative weight to
non-projections. We call these functions improper weightings and in this context
we call weightings proper weightings.

The notion of superposition for operations can be extended to weightings in
a natural way as follows.

Definition 16. For any clone C , any weighting ω ∈ Wk
C , and any g1, ..., gk ∈

Cm, we define the superposition of ω and g1, ..., gk to be the (possibly improper)
weighting ω[g1, ..., gk] ∈Wm

C defined by:

ω[g1, ..., gk](f ′) :=
∑

f∈Ck

f ′=f [g1,...,gk]

ω(f)

If the result of a superposition is a proper weighting, then we call this superpo-
sition a proper superposition.

Note that the superposition of a projection with projections is again a pro-
jection. Thus, the superposition with projections only is always proper, since the
negative weights from projections stay on projections.

Example 10. Let D = {0, 1}, C = Clone({∧,∨, C0, C1}), where C0, C1 are
constant operations, and let ω be the binary weighting

ω = −3π1 − 4π2 + 1 ∧+3 ∨+2C0 + 1C1.
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Then the superposition

ω[π1, π1] = −3π1[π1, π1]− 4π2[π1, π1] + 1 ∧ [π1, π1] + 3 ∨ [π1, π1]+
+ 2C0[π1, π1] + 1C1[π1, π1] = −3π1 − 4π1 + 1π1 + 3π1 + 2C0 + 1C1 =
= −3π1 + 2C0 + C1

is proper, while the superposition

ω[π2, C0] = −3π1[π2, C0]− 4π2[π2, C0] + 1 ∧ [π2, C0] + 3 ∨ [π2, C0]+
+ 2C0[π2, C0] + 1C1[π2, C0] = −3π2 − 4C0 + 1C0 + 3π2 + 2C0 + 1C1 =
− C0 + C1

is improper.

We are now ready to define weighted clones.

Definition 17 (Weighted clone). A set of weightings W ⊆ WC over a clone C
is a weighted clone over C if it

1. contains all zero weightings (i.e. weightings θ : C k → {0}), for every k ∈ N;

2. is closed under conical combinations of weightings (more precisely, under
nonnegative scaling and sum of weightings, i.e. if ω1, ω2 ∈ W and q1, q2 ∈
Q+

0 , then θ := q1ω1 + q2ω2 is also in W where θ(f) = q1ω1(f) + q2ω2(f));

3. is closed under proper superposition (more precisely if a k-ary weighting ω
is inW , g1, g2, ..., gk ∈ Cm and ω[g1, ..., gk] is proper, then ω[g1, ..., gk] ∈ W);

Example 11. For any clone C the set WC containing all weightings of C is a
weighted clone. Also, the set W0

C containing all zero weightings of C is a weighted
clone. We call these weighted clones trivial, and all others nontrivial.

Example 12. The intersection of any set of weighted clones is a weighted clone.

As for clones, we define closure operator and k-ary parts of a weighted clone.

Definition 18 (Closure operator). For any set of weightingsW ⊆WC of a clone
C we define wClone(W) to be the smallest weighted clone containing W .

Fundamental link between weighted relations and weightings can by defined
using weighted polymorphism.

Definition 19 (Weighted polymorphism). Let R : Dr 7→ Q ∪ {∞} be an r-ary
weighted relation on some domain D and let ω be a k-ary weighting of some clone
of operations C on the set D. We say that ω is a weighted polymorphism of R if,
for any x̄1, ..., x̄k ∈ Dr such that R(x̄i) <∞ for i = 1, ..., k we have∑

f∈Ck
ω(f)R(f(x11, ..., x1k), ..., f(xr1, ..., xrk)) ≤ 0.

If ω is a weighted polymorphism of R, we say that R is improved by ω. For any
given sets Γ ⊆ wRD and W ⊆WC let

wPol(Γ) = {ω ∈WC | ∀R ∈ Γ ω is a weighted polymorphism of R},
Imp(W) = {R ∈ wRD| ∀ω ∈W R is improved by ω}.

10



It follows immediately from the definition of a Galois connection that, for any
set D, the mappings wPol and Imp form a Galois connection between WC and
wRD. This Galois connection for finite sets D is characterized by the following
theorem [6], [10].

Theorem 4 (Galois Connection for Valued Constraint Languages).
1. For any finite D, and any finite Γ ⊆ wRD, Imp(wPol(Γ)) = wRelClone(Γ).
2. For any finite D and any finite W ⊆WC , wPol(Imp(W)) = wClone(W).

This means that there is one-to-one correspondence between valued langu-
ages closed under expressibility and weighted clones. Thus, we can investigate
the complexity of VCSP through weighted clones instead of relational weighted
clones.

2.3 Properties of weightings
Definition 20 (k-ary part of a weighted clone). Let W ⊆ WC be a weighted
clone and let k be a natural number. We define the k-ary part Wk of W as a set
of all k-ary weightings in W .

Notation 6. Accordingly, the binary part of the weighted clone W is a set of all
binary weightings in W. We denote it by BP(W).

We do not prove the following technical Lemmas 1, 2 and Theorem 5, which
we will need further in the proofs of the main results of this work, because one
can find the proofs of these facts, for example, in the work of Jiří Vančura [8].
Lemma 1 shows that any conical combination of arbitrary superpositions of a set
of weightings can be obtained by taking a conical combination of superpositions
of this set with projections, and then taking a superposition of the result. Thus,
since the superposition with projections is always proper, any weighting which
can be expressed as a conical combination of arbitrary (possibly improper) su-
perpositions can also be expressed as a superposition of a conical combination of
proper superpositions. In other words, it allows us to use improper superpositions
when generating a weighted clone – as long as the resulting weighting is proper.
We state the lemma for the case of conical combination of two weightings but it
is clear that this constructions works for any conical combination.

Lemma 1. Let ω1, ω2 be weightings of a clone C of arities k and l respectively.
Let g1, ..., gk and h1, ..., hl be m-ary operations in C and let α1, α2 be nonnegative
rationals. We define a (possibly improper) weighting

ω := α1ω1[πk+l
1 , ..., πk+l

k ] + α2ω2[πk+l
k+1, ..., π

k+l
k+l ] (2.2)

Then
α1ω1[g1, ..., gk] + α2ω2[h1, ..., hl] = ω[g1, ..., gk, h1, ..., hl] (2.3)

Very often in further proofs we will use the following consequence of Lemma 1
that allows us to generate a weighted cloneW = wClone(W) in one step. Namely,
it says that when generating a k-ary part of a weighted clone W = wClone(W),
we can consider only k-ary superpositions of weightings from W .

11



Lemma 2. (Superposition Lemma) Let W be a set of weightings of a clone C.
A k-ary part of the weighted clone W := wClone(W) is equal to the set of all
proper weightings of the form

α1ω1[f11, ..., fm11] + α2ω2[f12, ..., fm22] + ...+ αnωn[f1n, ..., fmnn] (2.4)
where ω1, ..., ωn are weightings from W with arities m1, ...,mn, α1, ..., αn ∈ Q+

0
and f11, ..., fm11, ..., f1n, ..., fmnn are k-ary operations from C.

Note that the weightings in the conical combination 2.4 may repeat.
Finally, Theorem 5 provides a way to determine if a weighted clone W is

trivial or not.
Theorem 5. (Positive Projection) Let W be a weighted clone over a clone C.
If there exist a k-ary weighting ω ∈ W such that ω(πki ) > 0 for some coordinate
i ≤ k, k ≥ 2 then W = WC .

We now introduce a binary relation on the set of all weightings WC over a
clone C which will help us to distinguish nontrivial weighted clones.
Definition 21. For a k-ary weighting ω and a m-ary weighting τ over a clone C
we say that weighting ω generates weighting τ , denoted ω → τ , if there exist non-
negative rationals s1, s2, ..., sn and m-ary operations f11, ..., fk11, ..., f1n, ..., fknn
from C such that

τ = s1ω[f11, ..., fk11] + s2ω[f12, ..., fk22] + ...+ snω[f1n, ..., fknn] (2.5)
Note that if τ , ω are proper weightings, then τ ∈ wClone(ω).

Lemma 3. The binary relation → determines a quasiorder on WC .
Proof. Consider weightings over a clone C . It is obvious, that ω → ω. Let’s
prove transitivity, i.e. that if τ → θ and θ → ω, then τ → ω. Suppose that τ
is a k-ary weighting, θ is a m-ary weighting and ω is a p-ary weighting. Since
τ → θ then there exist nonnegative rationals α1, ..., αn and m-ary operations
f11, ..., fk1, ..., f1n, ..., fkn from C , such that

θ = α1τ [f11, ..., fk1] + α2τ [f12, ..., fk2]...+ αnτ [f1n, ..., fkn]
Analogically, since θ → ω, there exist nonnegative rationals β1, ..., βt and p-ary
operations g11, ..., gm1, ..., g1t, ..., gmt from C , such that

ω = β1θ[g11, ..., gm1] + β2θ[g12, ..., gt2]...+ βtθ[g1t, ..., gmt]
Therefore

ω = β1(α1τ [f11, ..., fk1] + ...+ αnτ [f1n, ..., fkn])[g11, ..., gm1] + ...

...+ βt(α1τ [f11, ..., fk1] + ...+ αnτ [f1n, ..., fkn])[g1t, ..., gmt] =
= β1(α1τ [h111, ..., hk11] + ...+ α1τ [h111, ..., hkn1]) + ...

...+ βt(α1τ [h111, ..., hk11] + ......+ α1τ [h1nt, ..., hknt]),
where hijr = fij[g1r, ..., gmr]. We see that ω is just a conical combination of su-
perposition of τ . Therefore τ → ω and the binary relation→ is a quasiorder.
Definition 22 (Equivalent weightings). We say that two weightings ω, τ over a
clone C are equivalent, denoted ω ↔C τ , if τ → ω and ω → τ .

By Lemma 3 the relation ↔ is an equivalence relation. Note that two proper
weightings ω ↔ τ if and only if wClone(ω) = wClone(τ).
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3. Structure of weighted clones
A complete description of a lattice of all clones on a two-element domain {0, 1}
was provided by Emil Post in 1941 [4]. This lattice is depicted on Figure 3.1.

Figure 3.1: The Post lattice of clones on two-element domain.
[sourse https://upload.wikimedia.org/
wikipedia/commons/thumb/1/19/Post-lattice.svg]

The detailed analysis of the structure of weighted clones over the clones in
Post lattice was started by Jiří Vančura [8]. It turned out, that the structure
of weighted clones over some clones is quite simple. For example, there is a sin-
gle nontrivial weighted clone over each of the unary clones UD = Clone({¬}),
UP0 = Clone({C0}), UP1 = Clone({C1}) and over each of the binary clones
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∧P = Clone({∧}), ∨P = Clone({∨}), and there are no nontrivial weighted clo-
nes over the ternary clones AP = Clone({min}) and DM = Clone({maj}).
But situation becomes more complicated when dealing with clones generated
by more than one operation. Jiří Vančura gave a complete description of the
structure of (uncountable many) weighted clones over the unary clone U =
Clone({¬, C0}) and of structure of (three nontrivial) weighted clones over the
unary clone UM = Clone({C0, C1}). He also proved some facts about the clone
MP = Clone({∧,∨}). We will improve his approach to investigation of the last
clone to obtain results for six other weighted clones.

In this chapter we partially describe the structure of weighted clones
over the clones ∧P0 = Clone({∧, C0}), ∧P1 = Clone({∧, C1}), ∧P01 =
Clone({∧, C0, C1}), and dually ∨P0 = Clone({∨, C0}), ∨P1 = Clone({∨, C1}),
∨P01 = Clone({∨, C0, C1}). For this first of all we will introduce concepts of
binary weighted clone and normed binary weighting. We also give a complete
description of all atomic and maximal weighted clones over the above-mentioned
clones.

3.1 Binary weighted clones
Definition 23 (Binary weighted clone). Binary weighted clone over a clone C
is a set of proper binary weightings W ⊆ WC such that any proper weighting,
which is equal to conical combination of weightings of the form ω[f, g], where
ω ∈ W and f, g are 2-ary operations from C, is in W .

Note that due to Lemma 2 the set of binary weightings W over the clone
C is a binary weighted clone if and only if it is a binary part of some weighted
cloneW ′ over C , BP(W ′). It is clear that different binary parts generate different
weighted clones, but different weighted clones might have the same binary part.

We will next examine weighted clones over the clones ∧P0 = Clone({∧, C0}),
∧P1 = Clone({∧, C1}) and ∧P01 = Clone({∧, C0, C1}). Each of the clones ∧P0
and ∧P1 contains exactly 2k k-ary operations: 2k−1 k-ary meet operations of the
form

∧kI (x1, ..., xk) :=
∧
i∈I
xi,

where ∅ 6= I ⊆ {1, ..., k}, and one constant operation, C0 or C1. The clone ∧P01
hence has (2k + 1) k-ary operations. In our notation ∧kI we will omit the arity
k in the superscript when the arity k is clear from the context. For I = {i} we
simply write ∧i, or πki , and for ∧{1,2} we write ∧.

We are now not able to describe the complete structure of weighted clones
over these three clones, but we will give a full description of their binary parts
(or binary weighted clones). Binary operations of the clones ∧P0, ∧P1 and ∧P01
are the two projections π2

1, π
2
2 and ∧, C0 for ∧P0, ∧, C1 for ∧P1 and ∧, C0, C1 for

∧P01.

Definition 24. We say that a k-ary (possibly improper) weighting

ω =
∑

∅6=I⊆{1,...,k}
ω(∧kI ) ∧kI +bC0 + cC1 (3.1)

over a clone C is normed if b+ c = 1.
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Definition 25. Given a weighted clone W over a clone C ∈ {∧P0,∧P1,∧P01} we
denote Norm(W ) the set of all normed weighting in W .

Note that every weighting with nonzero weight on at least one constants C0, C1
has an equivalent normed form. Since we will further work mostly with binary
weighted clones, we define the following weightings.

Definition 26. For non-negative rationals a1, a2, 0 < t < 1 we denote by ω0
a1a2 ,

ω1
a1a2 and ωta1a2 the normed (possibly improper) binary weightings

ω0
a1a2 = −a1π1 − a2π2 + (a1 + a2 − 1) ∧+C0

ω1
a1a2 = −a1π1 − a2π2 + (a1 + a2 − 1) ∧+C1

ωta1a2 = −a1π1 − a2π2 + (a1 + a2 − 1) ∧+(1− t)C0 + tC1.

We denote by ω∧ the binary weighting

ω∧ = −a1π1 − a2π2 + 2 ∧ .

We call the weights on projections of ωta1a2 , i.e. a1, a2, the coefficients of ωta1a2 .
We will use the notation ωa1a2 without superscript when considering weighted
clones over the clones ∧P0, ∧P1, since there is no danger of confusion.

3.2 Binary weighted clones over the clone with
one constant

At first, we consider the weighted clones over the clones ∧P0, ∧P1, since they
have analogical and easier structure than the common case with both constants.
Based on these results we will further describe the structure of binary weighted
clones over the clone ∧P01.

To a binary (possibly improper) weighting ωa1a2 we assign a point (a1, a2) in
Q2
≥0, where

Q2
≥0 = {(a, b) ∈ Q2 : a, b ≥ 0}.

Thus, for example, as it is shown in Figure 3.2, a proper weighting ω2,3 = −2π1−
3π2 + 4 ∧ +C0 corresponds to the point (2, 3), and improper weightings ω 1

2 ,0
=

−1
2π1− 1

2∧+C0, ω0,0 = −∧+C0 correspond to points (1
2 , 0) and (0, 0) respectively.
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ω 1
2 ,0

= −1
2π1 − 1

2 ∧+C0

ω2,3 = −2π1 − 3π2 + 4 ∧+C0

ω0,1 = −π2 + C0

ω0,0

a1

a2

0 1 2 3

1

2

3

1/2

Figure 3.2: Correspondence between normed weightings and points in Q2
≥0.

In this way, every set of normed weightings corresponds to a set of points in
Q2
≥0. We will describe all binary weighted clones via the structure of the corre-

sponding sets in Q2
≥0. The critical properties of those sets are described in the

following definition.
Definition 27. We say that a subset M of Q2

≥0 satisfies Property (∗) if:
(1) M is convex, i.e., for every x1,x2 ∈ M and every t ∈ [0, 1] we have tx1 +

(1− t)x2 ∈M ;

(2) M contains the points (0, 1) and (1, 0);

(3) M is symmetric with respect to the line x = y, i.e. (x, y) ∈M ⇔ (y, x) ∈M ;

(4) if M contains a point (x, y), then (x, 0) ∈M and (0, y) ∈M .
For the clones ∧P0, ∧P1 we define two objects, M(W ) and W (M), as follows:

Definition 28. Given a binary weighted clone W over a clone C ∈ {∧P0,∧P1}
we denote by M(W ) the following set of points in Q2

≥0

M(W ) := {(b1, b2) : ωb1b2 is (possibly improper) weighting
such that ωb1b2 ← ω ∈ W}.

Definition 29. Given a set M of points in Q2
≥0 we denote by W (M) the set of

proper binary weightings
W (M) := {sωa1a2 : (a1, a2) ∈M, s ≥ 0, a1 + a2 ≥ 1} ∪ {the zero weighting}.
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3.2.1 Binary weighted clones over the clone ∧P0

After these preliminary definitions we now start with describing weighted clones
over the clone ∧P0 = Clone({∧, C0}).
Lemma 4. For every nonnegative rationals a1, a2, b1 + b2 > 1 the following is
true over the clone ∧P0:
(1) ω∧ → ωa1a2 9 ω∧;

(2) ωa1a2 → ω1,0 9 ωb1b2.
Proof. (1) Consider the binary superposition

a1ω∧[∧, π2] + a1ω∧[π1,∧] + ω∧[∧, C0] =
= a2(− ∧−π2 + 2∧) + a1(−π1 − ∧+ 2∧) + (− ∧−C0 + 2C0) =
= −a1π1 − a2π2 + (a1 + a2 − 1) ∧+C0.

Therefore ω∧ → ωa1a2 .
On the other hand, we cannot remove positive weight from C0 by any of the
42 = 16 binary superpositions of ωa1a2 . Indeed, there is the trivial superpo-
sition ωa1a2 [π1, π2], there is the superposition ωa1a2 [π2, π1] that switches the
weights on projections, there is the zero superposition ωa1a2 [C0, C0], there
are 6 superpositions for i = 1, 2

ωa1a2 [πi, πi] = −πi + C0,

ωa1a2 [πi, C0] = −a1πi − a2C0 + (a1 + a2 − 1)C0 + C0 = −a1πi + a1C0,

ωa1a2 [C0, πi] = −a2πi + a2C0,

equal ω = −πi + C0 for i = 1, 2 multiplied by some nonnegative rational,
there are 3 superpositions,

ωa1a2 [∧,∧] = − ∧+C0,

ωa1a2 [∧, C0] = −a1 ∧ −a2C0 + (a1 + a2 − 1)C0 + C0 = −a1 ∧+a1C0,

ωa1a2 [C0,∧] = −a2 ∧+a2C0,

equal η = − ∧ +C0 multiplied by some nonnegative rational. And finally,
there are 4 superpositions for i = 1, 2

ωa1a2 [πi,∧] = a1πi − a2 ∧+(a1 + a2 − 1) ∧+C0 = −a1πi + (a1 − 1) ∧+C0,

ωa1a2 [∧, πi] = −a2πi + (a2 − 1) ∧+C0,

which still have positive weight on C0. Therefore ωa1a2 9 ω∧.

(2) Consider the binary superposition
1
a1
ωa1a2 [π1, C0] = −π1 + C0.

Therefore ωa1a2 → ω1,0.
On the other hand, we cannot get positive weight on ∧ by any of the
41 = 4 binary superpositions of ω1,0, since ω1,0[C0,−] is the zero weighting,
ω1,0[πi,−] = −πi + C0 for i = 1, 2 and ω1,0[∧,−] = − ∧ +C0. Therefore
ω1,0 9 ωb1b2 .
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We will further use the following important consequence of the proof of the
previous lemma.

Corollary 1. Let ωa1a2 be a normed (possibly improper) weighting over the clone
∧P0 and let

P = {(a1, a2), (a2, a1), (a1, 0), (0, a1), (a2, 0), (0, a2), (0, 1), (1, 0), (0, 0)}.

Then
1. For each point (a′1, a′2) ∈ P there exist binary operations f, g from ∧P0 such
that ωa1a2 [f, g] is a positive multiple of ωa′

1a
′
2
.

2. For each binary operations f, g from ∧P0, ωa1a2 [f, g] is either the zero weighting
or a positive multiple of ωa′

1a
′
2
, where (a′1, a′2) ∈ P .

Lemma 5. For every nontrivial binary weighted clone W over the clone ∧P0 the
set M(W ) satisfies Property (∗).

Proof. Consider a binary weighted clone W that contains an arbitrary nonzero
weighting with the zero weight on the constant C0, say ω = −a1π1 + a2π2 + (a1 +
a2)∧. Then

1
a1 + a2

(ω + ω[π2, π1]) = −π1 − π2 + 2∧ = ω∧.

By Lemma 4 we know that ω∧ → ωb1b2 for every b1, b2 ≥ 0. Thus, M(W ) = Q2
≥0

and therefore M(W ) satisfies Property (∗).
Now consider a binary weighted clone W whose all nonzero weightings have

nonzero weight on the constant C0. We have to prove that M(W ) satisfies Pro-
perty (∗).

We first prove that M(W ) is convex. Note that all points in the triangle with
the vertices (1, 0), (0, 0), (0, 1) correspond to improper weightings. Consider any
point (a1, a2) ∈ M(W ). According to Definition 28 there exist proper binary
weighting ωa′

1a
′
2
such that ωa′

1a
′
2
→ ωa1a2 . For every a1, a2 ≥ 0 the weighting

ωa1a2 by the superpositions ωa1a2 [π1, π1], ωa1a2 [π2, π2] and ωa1a2 [∧,∧] generates
the weightings ω1,0, ω0,1 and ω0,0 respectively. By the transitivity ωa′

1a
′
2
→ ω1,0,

ωa′
1a

′
2
→ ω0,1 and ωa′

1a
′
2
→ ω0,0. Since for every point (a′′1, a′′2), where a′′1, a′′2 ≥ 0,

a′′1 + a′′2 ≤ 1 there exist nonnegative rationals s1, s2, s3, where s1 + s2 + s3 = 1,
such that

ωa′′
1a

′′
2

= s1ω1,0 + s2ω0,0 + s3ω0,1,

then ωa′
1,a

′
2
→ ωa′′

1a
′′
2
. Hence M(W ) contains the whole triangle with the vertices

(1, 0), (0, 0), (0, 1).
Now consider any two points (a1, a2), (b1, b2) ∈ M(W ) such that a1 + a2 ≥ 1,

b1 + b2 ≥ 1. Due to definition 28, ωa1a2 , ωb1b2 ∈ Norm(W ). For every t ∈ [0, 1] the
point

t(a1, a2) + (1− t)(b1, b2) = (ta1 + (1− t)b1, ta2 + (1− t)b2)
corresponds to the normed weighting

ω(ta1+(1−t)b1),(ta2+(1−t)b2) = tωa1a2 + (1− t)ωb1b2 =
= −(ta1 + (1− t)b1)π1 − (ta2 + (1− t)b2)π2+
+ (t(a1 + a2) + (1− t)(b1 + b2)− 1) ∧+C0.
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Since the binary weighted cloneW is closed under nonnegative scaling and sum of
weightings, then the weighting ω(ta1+(1−t)b1),(ta2+(1−t)b2) ∈ Norm(W ) and therefore
the point (ta1 + (1 − t)b1, ta2 + (1 − t)b2) ∈ M(W ). Together with the fact that
M(W ) contains the triangle with the vertices (1, 0), (0, 0), (0, 1) it follows that
M(W ) is convex.

Now it is sufficient to note that by Corollary 1 for every (possibly improper)
normed weighting ωa1a2 such that (a1, a2) ∈M(W ),M(W ) contains all the points
(a′1, a′2), where

(a′1, a′2) ∈ {(a1, a2), (a2, a1), (a1, 0), (0, a1), (a2, 0), (0, a2), (0, 1), (1, 0), (0, 0)}.

Therefore M(W ) satisfies the conditions (2), (3), (4) in the definition of Property
(∗).

ω 1
2 ,

2
3

= −1
2π1 − 2

3π2 + C0

ω2,3 = −2π1 − 3π2 + 4 ∧+C0

ω2,3[∧, π2] = −2π2 + ∧+ C0

ω3,0 = ω3,2[π1,∧]

ω3,2 = ω3,2[π2, π1]

ω1,0 = −π1 + C0

ω1,1 = −π1 − π2 + ∧+ C0

a1

a2

0 1 2 3

1

2

3

2
3

1
2

Figure 3.3: Illustration to Lemma 5.

Lemma 6. For every set M ⊆ Q2
≥0 that satisfies Property (∗), W (M) is a binary

weighted clone.

Proof. Consider a proper binary weighting ω which is equal to

ω = r1ω1[f1, g1] + r2ω2[f2, g2] + ...+ rnωn[fn, rn],

where r1, r2, ..., rn are nonnegative rationals, ω1, ω2, ..., ωn ∈ W (M) and fi, gi for
i = 1, ..., n are binary operations from the clone ∧P0. According to Definition 29,
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each ωi for i = 1, ..., n is of the form siωaibi , where (ai, bi) ∈M . By Corollary 1, for
every fi, gi from ∧P0, the superposition ωaibi [fi, gi] is either the zero weighting or
positive multiple of ωa′

ib
′
i
for some (a′i, b′i) ∈M . Assume without loss of generality

that ωaibi [fi, gi] for every i = 1, ..., n is not the zero weighting. Therefore, for some
positive rationals k1, ..., kn we can rewrite ω as

ω = r1s1k1ωa′
ib

′
i
+ ...+ rnsnknωa′

nb
′
n

=
= (r1s1k1 + ...+ rnsnkn)(p1ωa′

1b
′
1

+ ...+ pnωa′
nb

′
n
) = sωab,

where s = (r1s1k1 + ... + rnsnkn), (p1 + ... + pn) = 1, a = (p1a
′
1 + ... + pna

′
n)

and b = (p1b
′
1 + ... + pnb

′
n). Since M is convex, then (a, b) ∈ M and therefore

ω ∈ W (M). According to Definition 23, W (M) is a binary weighted clone over
the clone ∧P0.

Before we turn to the main result of this section, which concerns the complete
classification of binary weighted clones over the clone ∧P0, we formulate Theorem
6 about the largest and the smallest nontrivial weighted clones over the clone ∧P0.

Theorem 6. The largest nontrivial weighted clone over the clone ∧P0 is W∧,
defined as follows: a k-ary weighting ω is in W∧ if and only if for each nonempty
set of coordinates I ⊆ {1, ..., k} ∑

∅6=J⊆I
ω(∧J) ≤ 0. (3.2)

Moreover W∧ is generated by the weighting ω∧ = −π1 − π2 + 2∧.
The smallest nontrivial weighted clone over the clone ∧P0 is W1,0, defined as

follows: for every k

W k
1,0 = {ω ∈ W∧P0 : for every I ⊆ {1, ..., k} such that |I| > 1, ω(∧I) = 0}.

Moreover W1,0 is generated by the unary weighting ω1,0 = −π1 + C0.

We do not give a whole proof for the largest nontrivial weighted clone W∧,
since the main idea belongs to Jiří Vančura and was in detail described by him
for the weighted clone over the clone ∧ = wClone(∧) [8]. We only consider parts
that concern the appearance of the constant C0 in the clone ∧P0.

Proof. For the first part of the theorem we first prove that any k-ary weighting ω
that is not inW∧ generates the trivial weighted cloneW∧P0 . Let ∅ 6= I ⊆ {1, ..., k}
be a set of coordinates for which ω violates the condition (3.2), i.e. such that∑
∅6=J⊆I ω(∧J) > 0. Assume without loss of generality that I = {1, 2, ..., p}. We

consider a superposition of ω with two projections π1, π2 such that we input π1
into the coordinates from I and π2 elsewhere. Then the resulting weighting

ω′ = ω[π1, ..., π1︸ ︷︷ ︸
p

, π2, ..., π2] =

∑
∅6=J⊆I

ω(∧J)π1 +
∑

∅6=J ′⊆{1,...,k}\I
ω(∧J ′)π2 +

∑
∅6=J ′′, J ′′∩I 6=∅∧

J ′′∩J ′ 6=∅

ω(∧J ′′) ∧+cC0

is proper and has weight ∑∅6=J⊆I ω(∧J) > 0 on projection π1. Due to Theorem 5,
ω generates the trivial weighted clone W∧P0 .
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We now can prove that W∧ = wClone(ω∧). To show, that wClone(ω∧) ⊆ W∧
we have to prove that ω∧ does not generate any weightings outside of W∧. We
already know that any weighting outside W∧ generates all weightings, i.e. if ω∧
generates some k-ary weighting, then ω∧ generates any m-ary weighting (and due
to Lemma 2 we can do it in one step). Thus, it is sufficient to show that we cannot
generate any binary weighting outside of the W∧. In order to generate positive
weight on projection we have to move the weight 2 from ∧ to a projection. But
it can be done only by superpositions ω∧[πi, πi] for i = 1, 2, which is the zero
weighting.

The fact that every k-ary weighting ω ∈ W∧, which has the zero weight on the
constant C0, is generated by the weighting ω∧, was proved by Jiří Vančura using
Farkas’ lemma (see [8]). Thus, to prove thatW∧ ⊆ wClone(ω∧) it is now sufficient
to show that any nonzero k-ary weighting θ = ∑

∅6=I⊆{1,...,k} ω(∧kI ) ∧kI +cC0 with
c > 0 from W∧ can be generated by an appropriate weighting ω from W∧ with
the zero weight on the constant C0. Consider the (k + 1)-ary weighting

ω =
∑

∅6=I⊆{1,...,k}
ω(∧k+1

I ) ∧k+1
I +c ∧k+1

{1,...,k,k+1} .

The weighting ω is from W∧. Indeed, since θ ∈ W∧, then for each nonempty
set of coordinates I ⊆ {1, ..., k} the sum ∑

∅6=J⊆I ω(∧kJ) ≤ 0. Since ω(∧k+1
I′ ) = 0

for every proper subset I ′ ⊆ {1, ..., k + 1} such that {(k + 1)} ∈ I ′ and the
sum ∑

∅6=I⊆{1,...,k} ω(∧k+1
I ) + c = 0, then the extension of the set {1, ..., k} to

the set {1, ..., k, k + 1} does not change the inequality. Also, it is easy to see
that the superposition ω[π1, ..., πk, C0] equals θ. Thus, by transitivity, ω∧ → θ
and W∧ ⊆ wClone(ω∧). Therefore, W∧ = wClone(ω∧) and since each weighting
outside ofW∧ generates the trivial weighted clone ∧P0,W∧ is the largest weighted
clone over the clone ∧P0.

For the second part of the theorem we first prove that W1,0 = wClone(ω1,0).
On the one hand, each k-ary weighting ω from W1,0 is of the form

ω = −a1π1 − a2π2 − ...− akπk + (a1 + a2 + ...+ ak)C0 =
a1(−π1 + C0) + a2(−π2 + C0) + ...+ ak(−πk + C0) =
a1ω1,0[π1] + a2ω1,0[π2] + ...+ akω1,0[πk].

Therefore, each weighting ω ∈ W1,0 is in wClone(ω1,0), i.e. W1,0 ⊆ wClone(ω1,0).
On the other hand, due to Lemma 2, we can generate a k-ary part of the weighted
clone wClone(ω1,0) in one step by only k-ary superpositions of ω1,0. That is, for
every proper k-ary weighting ω ∈ wClone(ω1,0) there exist nonnegative rationals
a1, ..., ak, bI for I ⊆ {1, ..., k}, |I| > 1 and c such that ω is equal to:

ω = +a1ω1,0[∧1] + ...+ akω1,0[∧k] +
∑

∅6=I⊆{1,...,k}
|I|>1

bIω1,0[∧I ] + cω1,0[C0] =

a1(− ∧1 +C0) + ...+ ak(− ∧k +C0) +
∑

∅6=I⊆{1,...,k}
|I|>1

bI(− ∧I +C0) + c(−C0 + C0) =

− a1 ∧1 −...− ak ∧k −
∑

∅6=I⊆{1,...,k}
|I|>1

bI ∧I +(a1 + ...+ ak)C0 + (
∑

∅6=I⊆{1,...,k}
|I|>1

bI)C0.
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Since ω is proper, we have bI = 0 for all I ⊆ {1, ..., k}, |I| > 1. Thus, every
k-ary weighting ω ∈ wClone(ω1,0) is in W k

1,0 and wClone(ω1,0) ⊆ W1,0. Therefore
wClone(ω1,0) = W1,0. This proves that W1,0 is actually a weighted clone and is
generated by the weighting ω1,0.

Finally, we show that W1,0 is the smallest nontrivial weighted clone, i.e. is
contained in all nontrivial weighted clones. Indeed, let τ be an arbitrary k-ary
nonzero weighting that does not generate all weightings. If τ has the zero weight
on the constant C0, then τ generates the largest nontrivial weighted clone W∧.
Otherwise, if τ(C0) = c > 0 consider the superposition:

1
c
τ [π1, π1, ..., π1] = 1

c

(
cπ1 + cC0

)
= −π1 + C0.

That is, in both cases wClone(ω1,0) ⊆ wClone(τ). Therefore W1,0 is smallest
weighted clone over the clone ∧P0.

The next theorem another significant weighted clone over the clone ∧P0.

Theorem 7. The nontrivial weighted clone over the clone ∧P0 that contains all
others nontrivial weighted clones except the weighted clone W∧ is Wc6=0, defined
as follows: a k-ary weighting ω is in Wc 6=0 if and only if for each nonempty set of
coordinates I ⊆ {1, ..., k} and for each nonempty set of coordinates T ⊆ {1, ..., k}
such that T ∩ {j : ω(πkj ) < 0} 6= ∅,∑

∅6=J⊆I
ω(∧kJ) ≤ 0, (3.3)

∑
∅6=J⊆T

ω(∧kJ) < 0. (3.4)

Proof. We first prove that Wc 6=0 is a weighted clone. It is obvious that Wc6=0 is
closed under conical combinations of weightings, since for each θ, τ ∈ Wc 6=0 and
p, q ∈ Q+

0 the weighting ω = pθ + qτ has weight on operation f that equals
ω(f) = pθ(f) + qτ(f). Thus we only have to prove that Wc 6=0 is closed under
proper superposition. Consider a proper k-ary weighting ω = τ [f1, f2, ..., fm],
where the weighting τ is in Wm

c6=0 and operations f1, f2, ..., fm are from (∧P0)k.
We have to prove that ω satisfies conditions (3.3) and (3.4).

From Theorem 6 we know that every τ from Wc 6=0 can be generated by the
weighting ω∧, which does not generate any weighting outside the weighted clone
W∧. Since by transitivity ω∧ generates τ [f1, ..., fm] for every f1, f2, ..., fm from
(∧P0)k, then for each nonempty set of coordinates I ⊆ {1, ..., k}∑

∅6=J⊆I
ω(∧kJ) =

∑
∅6=J⊆I

τ [f1, ..., fm](∧kJ) ≤ 0

and ω satisfies condition (3.3).
Now let’s prove that for each nonempty set of coordinates T ⊆ {1, ..., k} such

that T ∩ {j : ω(πkj ) < 0} 6= ∅, ∑∅6=J⊆T ω(∧kJ) < 0. Suppose that there exist a set
of coordinates T ′ ⊆ {1, ..., k} such that for some j ∈ T ′

ω(πkj ) = τ [f1, ..., fm](πkj ) < 0, but
∑

∅6=J⊆T ′

ω(∧kJ) =
∑

∅6=J⊆T ′

τ [f1, ..., fm](∧kJ) = 0.
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Note that we can get the weight τ [f1, ..., fm](πkj ) on πkj only by substitution of
some set of projections {πms1 , ..., π

m
sr} in τ [πm1 , πm2 , ..., πmm] to πkj . Thus, there exist

a set of coordinates {s : fs = πkt , where t ∈ T ′} = T ′′ ⊆ {1, ...,m} such that for
some s ∈ {s1, ..., sr}

τ(πms ) < 0, but
∑

∅6=J⊆T ′′

τ(∧mJ ) = 0.

But it is contradiction, because τ ∈ Wc6=0. Thus, ω satisfies condition (3.4) and
Wc 6=0 is a weighted clone.

It remains to prove thatWc6=0 contains all other nontrivial weighted clones, ex-
cept the weighted cloneW∧. Consider an arbitrary k-ary nonzero proper weighting
ω which violates one of the conditions (3.3), (3.4). If ω violates condition (3.3),
i.e. there exist a subset I ⊆ {1, ..., k} such that ∑∅6=J⊆I ω(∧J) > 0, then, as we
know from the proof of Theorem 6, ω generates the trivial weighted cloneW∧P0 . If
ω violates condition (3.4), then there exist some set of coordinates I ⊆ {1, ..., k}
such that I ∩ {j : ω(πj) < 0} 6= ∅ and ∑∅6=J⊆I ω(∧J) = 0. We can assume that
I = {1, 2, ..., p}. Then the superposition

ω′ = ω[π1, ..., πp, C0, ..., C0] =
∑
∅6=J⊆I

ω(∧J) ∧J +
(
c+

∑
J ′⊆{1,...,k}
J ′∩{p+1,...,k}6=∅

ω(∧J)
)
C0

is a proper nonzero weighting with the zero weight on the constant C0. Due
to Theorem 6, ω′ generates the weighted clone W∧. Since every proper nonzero
weighting, which is not in Wc 6=0, generates either W∧P0 or W∧, then the weighted
clone Wc6=0 contains all nontrivial weighted clones, except W∧.

Now to describe all binary weighted clone over the clone ∧P0 we can formulate
the following Theorem 8.

Theorem 8. Every nontrivial binary weighted clone over the clone ∧P0 is either
BP(W∧) or is equal to W (M) for some M ⊆ Q2

≥0 satisfying Property (∗). For
every two sets M , M ′ satisfying (∗), W (M) ⊆ W (M ′) if and only if M ⊆ M ′,
and W (M) ⊆ BP(W∧).

Proof. Consider nontrivial binary weighted clone W that contains an arbitrary
nonzero binary weighting ω = −a1π1− a2π2 + (a1 + a2)∧ with the zero weight on
the constant C0. As we know from the proof of Lemma 5, ω → ω∧. By Theorem
6, W contains BP(W∧) and since W∧ is the largest nontrivial weighted clone,
W = BP(W∧) and contains all other binary weighted clones.

Now consider an arbitrary nontrivial binary weighted clone W over the clone
∧P0 that contains only binary weightings with nonzero weight on the constant C0
(except the zero weighting). Due to Lemma 5, the set M(W ) satisfies Property
(∗).

To prove the first part of the claim it is enough to verify thatW (M(W )) = W .
Consider an arbitrary nonzero binary weighting ω ∈ W . Since ω(C0) 6= 0, then
ω = sωa1a2 for some nonnegative rationals s, a1, a2. Therefore (a1, a2) ∈ M(W ).
Since ω is proper, then a1 + a2 ≥ 1 and ω = sωa1a2 ∈ W (M(W )). On the other
hand, according to Definition 29 each binary weighting ω ∈ W (M(W )) is proper
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and of the form sωa1a2 for some s ≥ 0 and (a1, a2) ∈ M(W ), where a1 + a2 ≥ 1.
That implies ωa1a2 ∈ Norm(W ). Since W is closed under nonnegative scaling,
then ω = sωa1a2 ∈ W . Therefore, W (M(W )) = W .

For the second part of the claim note that if M ⊆M ′, then W (M) ⊆ W (M ′)
directly from the definition of W (M). On the other hand, if there exist a point
(a1, a2) ∈ M such that (a1, a2) /∈ M ′, then a1 + a2 ≥ 1 (since both M and
M ′ contain the triangle with the vertices (1, 0), (0, 0), (0, 1)). Thus, the weighting
ωa1a2 is proper and is in W (M) but not in W (M ′). Therefore W (M) * W (M ′).

ω1,3 ∈M ′

ω3,1

ω2 1
2 ,2

/∈M ′

ω2,2 1
2
∈M

a1

a2

0 1 2 3

1

2

3

Figure 3.4: Illustration to Theorem 8.

It follows from Theorem 8 that there are binary weighted clones, which are not
finitely generated. Moreover, there is continuum many binary weighted clones. A
2-generated and an infinitely generated binary weighted clones are shown in the
Figure 3.5.
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ω1,3

ω2 1
2 ,2

a1

a2

a1

a2

0 1 2 3

1

2

3

Figure 3.5: 2-generated and infinitely generated binary weighted clones.

To illustrate the lattice of binary weighted clones over the clone ∧P0 we intro-
duce the following notation. Given a binary weighting in normed form ωa1a2 we
denote the binary weighted clone generated by this weighting by Wa1a2 . (Given
a set of binary weightings in normed form ωa1a2 , ωb1b2 , ... we denote the binary
weighted clone, generated by those weightings by Wa1a2,b1b2,....)

BP(W∅)

BP(W1,0)

BP(Wa1a2), a1 + a2 > 1

BP(Wc6=0)

BP(W∧)

BP(W∧P0)

Figure 3.6: The lattice of binary weighted clones over the clone ∧P0.

Since the dual operations to ∧, C0 are ∨ and C1, weighted clones over the
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clone ∨P1=Clone({∨, C1}) have the similar structure.
Corollary 2. The largest nontrivial weighted clone over the clone ∨P1 is W∨,
defined as follows: a k-ary weighting ω is in W∨ if and only if for each nonempty
set of coordinates I ⊆ {1, ..., k} ∑

∅6=J⊆I
ω(∨J) ≤ 0. (3.5)

Moreover W∨ is generated by the weighting ω∨ = −π1 − π2 + 2∨.
The smallest nontrivial weighted clone over the clone ∨P1 is W1,0, defined as

follows: for every k

W k
1,0 = {ω ∈ W∨P1 : for every I ⊆ {1, ..., k} such that |I| > 1, ω(∨I) = 0}.

Moreover W1,0 is generated by the unary weighting ω1,0 = −π1 + C1.
Corollary 3. The nontrivial weighted clone over the clone ∨P1 that contains all
others nontrivial weighted clones except the weighted clone W∨ is Wc6=0, defined
as follows: a k-ary weighting ω is in Wc 6=0 if and only if for each nonempty set of
coordinates I ⊆ {1, ..., k} and for each nonempty set of coordinates T ⊆ {1, ..., k}
such that T ∩ {j : ω(πkj ) < 0} 6= ∅,∑

∅6=J⊆I
ω(∨kJ) ≤ 0, (3.6)

∑
∅6=J⊆T

ω(∨kJ) < 0. (3.7)

Corollary 4. Every nontrivial binary weighted clone over the clone ∨P1 is either
BP(W∨) or is equal to W (M) for some M ⊆ Q2

≥0 satisfying Property (∗). For
every two sets M , M ′ satisfying (∗), W (M) ⊆ W (M ′) if and only if M ⊆ M ′,
and W (M) ⊆ BP(W∨).

3.2.2 Binary weighted clones over the clone ∧P1

Now we will consider weighted clones over the clone ∧P1=Clone({∧, C1}). The
structure of weighted clones over the clone ∧P1 is very similar to the one over
the clone ∧P0. The essential difference between those two structures is in the fact
that in the most cases we can remove positive weight from C1.
Lemma 7. For every nonnegative a1, a2, b1 + b2 > 1 the following is true over
the clone ∧P1:
(1) ω∧ and ω1,0 are incomparable and ω∧ 9 ωa1a2, ω1,0 9 ωb1b2;

(2) if at least one of the two coefficients a1, a2 > 1 then wClone(ωa1a2) = W∧P1.
Otherwise, ωa1a2 and ω∧ are incomparable and ωa1a2 → ω1,0.

Proof. (1) It is sufficient to note that we cannot get positive weight on ∧ by
any superposition of ω1,0 and since

ω∧[C1, C1] = 0,
ω∧[C1, πi] = ω∧[πi, C1] = πi − C1, i = 1, 2,
ω∧[C1,∧] = ω∧[∧, C1] = ∧ − C1,

then we cannot get positive weight on C1 by any superposition of ω∧.
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(2) There are 42 = 16 binary superpositions of ωa1a2 .
The superpositions ωa1a2 [π1, π2], ωa1a2 [π2, π1], ωa1a2 [C1, C1], ωa1a2 [∧,∧] and
ωa1a2 [πi, πi], ωa1a2 [πi,∧], ωa1a2 [∧, πi] for i = 1, 2 are the same as in the case of
the weighting ωa1a2 over the clone ∧P0 with the only difference that instead
of the constant C0 there is the constant C1.
The last 6 superpositions differ because of properties of the constant C1.
For i = 1, 2
ωa1a2 [πi, C1] = −a1πi − a2C1 + (a1 + a2 − 1)πi + C1 = (a2 − 1)πi + (1− a2)C1,

ωa1a2 [C1, πi] = (a1 − 1)πi + (1− a1)C1,

ωa1a2 [∧, C1] = −a1 ∧ −a2C1 + (a1 + a2 − 1) ∧+C1 = (a2 − 1) ∧+(1− a2)C0,

ωa1a2 [C1,∧] = (a1 − 1) ∧+(1− a1)C0.

Thus, if neither a1 > 1 nor a2 > 1, then we cannot get negative weight
on C1. Therefore ωa1a2 9 ω∧. Since ω∧ 9 ωa1a2 , then ωa1a2 and ω∧ are
incomparable.
Consider the conical combination

δ = (a1 + a2 − 1)
(1− a1) ωa1a2 [C1,∧] + ωa1a2 =

= (a1 + a2 − 1)(− ∧+C1)− a1π1 − a2π2 + (a1 + a2 − 1) ∧+C1 =
= −a1π1 − a2π2 + (a1 + a2)C1.

Then
1

a1 + a2
δ[π1, π1] = −π1 + C1 = ω1,0.

Since ωa1a2 → δ → ω1,0, according to transitivity, ωa1a2 → ω1,0.
On the other hand, if at least one of the two coefficients a1, a2 > 1 (without
loss of generality assume a1 > 1), then the conical combination

θ = ωa1a2 [π2, π2] + 1
a1 − 1ωa1a2 [C1, π1] = −π2 + C1 + π1 − C1 = π1 − π2

is a proper weighting and has positive weight on the projection π1. Therefore
by Theorem 5, ωa1a2 generates the whole W∧P1 .

Corollary 5. Let ω be a proper k-ary weighting ω with nonzero weight on the con-
stant over the clone ∧P1. Assume that there exists a nonempty set of coordinates
I ⊆ {1, ..., k} such that ∑

∅6=J⊆I
ω(∧J) < −ω(C1). (3.8)

Then ω generates the trivial weighted clone W∧P1.
Proof. Without loss of generality we can assume that I = {1, ..., p}. Then the
conical combination

θ = 1
ω(C1)ω[π2, ..., π2] + 1

−∑∅6=J⊆I ω(∧J)− ω(C1)ω[C1, ..., C1︸ ︷︷ ︸
p

, π1, ..., π1] =

= −π2 + C1 + π1 − C1 = π1 − π2

is a proper weighting with positive weight on the projection π1.
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Corollary 6. Let ωa1a2 be a normed (possibly improper) weighting over the clone
∧P1 such that 0 ≤ a1, a2 ≤ 1 and let

P = {(a1, a2), (a2, a1), (a1, 0), (0, a1), (a2, 0), (0, a2), (0, 1), (1, 0), (0, 0)}.

Then
1. For each point (a′1, a′2) ∈ P there exist binary operations f, g from ∧P1 such
that ωa1a2 [f, g] is a positive multiple of ωa′

1a
′
2
.

2. For each binary operations f, g from ∧P1, ωa1a2 [f, g] is either the zero weighting
or a positive multiple of ωa′

1a
′
2
, where (a′1, a′2) ∈ P .

Although definitions of the objects M(W ) and W (M) over the clone ∧P0 are
the same as of the ones over the clone ∧P0, the lemmas about them differ a little.

Lemma 8. For every nontrivial binary weighted clone W over the clone ∧P1 the
set M(W ) is either empty or satisfies Property (∗).

Proof. Consider a binary weighted clone W that does not contain nonzero wei-
ghtings with nonzero weight on the constant C1. Since for an arbitrary binary
weighting ω = −a1π1 + a2π2 + (a1 + a2)∧ from W

1
a1 + a2

(ω + ω[π2, π1]) = −π1 − π2 + 2∧ = ω∧,

and on the other hand

a1ω∧[π1,∧] + a1ω∧[π2,∧] = ω,

then ω∧ and ω are equivalent. By Lemma 7 for any b1, b2 ≥ 0 the weighting ω∧
does not generate the weighting ωb1b2 . Thus, the set M(W ) is empty.

Now consider a binary weighted clone W that contains an arbitrary normed
weighting ωa1a2 . Replacing C0 with C1 in reasoning of Lemmas 5 proof we prove
that M(W ) satisfies Property (∗) as well.

Lemma 9. For every set M ⊆ Q2
≥0 that satisfies Property (∗) and is contained

in the square with vertices (1, 0), (0, 0), (0, 1), (1, 1), W (M) is a binary weighted
clone.

Proof. The proof of this Lemma is exactly the same as for Lemma 6, since the
restriction to be contained in the square with vertices (1, 0), (0, 0), (0, 1), (1, 1)
does not affect the properties of M .
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Figure 3.7: Illustration to Lemma 8.

Before we formulate the main result about the classification of all binary
weighted clones over the clone ∧P1 we consider Theorem 9 concerning two atomic
weighted clones.
Theorem 9. There are two atomic weighted clones over the clone ∧P1:

(1) the maximal weighted clone W∧, defined as follows: a k-ary weighting ω is
in W∧ if and only if ω(C1) = 0 and for each nonempty set of coordinates
I ⊆ {1, ..., k} ∑

∅6=J⊆I
ω(∧J) ≤ 0. (3.9)

Moreover, W∧ is generated by the weighting ω∧ = −π1 − π2 + 2∧;

(2) the weighted clone W1,0, defined as follows: for every k

W k
1,0 = {ω ∈ W∧P1 : for every I ⊆ {1, ..., k} such that |I| > 1, ω(∧I) = 0}.

Moreover, W1,0 is generated by the unary weighting ω1,0 = −π1 + C1.

Proof. Firstly, the proof that W∧ = wClone(ω∧) coincides with the proof of the
same fact given by Jiří Vančura over the clone ∧ = Clone(∧) (see [8]).

Secondly, the proof that W1,0 = wClone(ω1,0) coincides with the proof of the
same fact in Theorem 6 if we change the constant C0 to the constant C1.

Finally, it is clear from Lemma 7 that W1,0 * W∧ and W∧ * W1,0. Thus, it
remains to show that W1,0 and W∧ are atomic, i.e. that each nonzero weighting
generates a weighted clone that containsW∧ orW1,0. Indeed, let τ be an arbitrary
k-ary nonzero weighting. We have to consider two cases. If τ has the zero weight
on the constant C1, then τ → ω∧. Thus, τ generates the weighted clone W∧ (see
[8]). If τ(C1) = c > 0, consider the superposition:

1
c
τ [π1, ..., π1] = 1

c

(
cπ1 + cC0

)
= −π1 + C0.
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That is, wClone(ω1,0) ⊆ wClone(τ). Therefore W1,0 and W∧ are atomic weighted
clones over the clone ∧P1.

Corollary 7. For an arbitrary proper k-ary weighting ω with positive weight on
the constant and for an arbitrary nonzero proper m-ary weighting τ with zero
weight on the constant wClone(ω, τ) = W∧P1.

We now describe another maximal weighted clone over the clone ∧P1.

Theorem 10. The maximal weighted clone over the clone ∧P1 that contains all
others nontrivial weighted clones except the weighted clone W∧ is W≤−c, defined
as follows: a k-ary weighting ω is in W≤−c if and only if for each j ∈ {1, ..., k}
and for each nonempty set of coordinates ∅ 6= K ⊆ I ⊆ {1, ..., k}

ω(πj) ≤ 0, (3.10)∑
∅6=J⊆I

ω(∧J) ≤
∑
∅6=J⊆K

ω(∧J). (3.11)

Proof. We first prove an auxiliary statement.
Claim 1. A k-ary weighting ω is inW≤−c if and only if for each binary operations
g1, g2, ..., gk from (∧P1)2 a weighting φ = ω[g1, g2, ..., gk] for i = 1, 2 satisfies the
condition

−φ(C1) ≤ φ(πi) ≤ 0. (3.12)

Proof of Claim 1. Consider an arbitrary k-ary weightings ω ∈ W≤−c and the
superposition φ = ω[g1, g2, ..., gk], where g1, g2, ..., gk ∈ (∧P1)2. There are only
four binary operations containing in (∧P1): the two projections π1, π2, the meet
operation ∧ and the constant operation C1. Let TC1 = {j : gj = C1}, Tπi = {j :
gj = πi}. Note that

φ(πi) =
∑

∅6=J⊆TC1∪Tπi ,
J∩Tπi 6=∅

ω(∧J) =
∑

∅6=J⊆TC1∪Tπi

ω(∧J)−
∑

∅6=J⊆TC1

ω(∧J) ≤ 0,

since ω satisfies condition (3.11) and

φ(C1) =
∑

∅6=J⊆TC1

ω(∧J) + ω(C1).

Therefore

φ(πi) + φ(C1) =
∑

∅6=J⊆TC1∪Tπi

ω(∧J)−
∑

∅6=J⊆TC1

ω(∧J) +
∑

∅6=J⊆TC1

ω(∧J) + ω(C1) =

=
∑

∅6=J⊆TC1∪Tπi

ω(∧J) + ω(C1) =

=
∑

∅6=J⊆TC1∪Tπi

ω(∧J)−
∑

∅6=J⊆{1,...,k}
ω(∧J) ≥ 0,

again, since ω satisfies condition (3.11). Thus, φ satisfies conditions (3.12).
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On the other hand, assume that proper weighting ω is not in W≤−c. If ω
violates condition (3.10), then there exist j ∈ {1, ..., k} such that ω(πj) > 0.
Then the superposition

φ = ω[π1, π1, ...π2, ..., π1]

with the second projection on the j-th coordinate violates condition (3.12), since
φ(π2) > 0. If ω violates condition (3.11), then there exist two nonempty sets
∅ 6= K ⊆ I ⊆ {1, ..., k}, such that ∑∅6=J⊆I ω(∧J) >

∑
∅6=J⊆K ω(∧J). Without

loss of generality we can assume that K = {1, ..., p}, I = {1, ..., p + t} for some
0 < p, t. Then superposition

φ = ω[C1, ..., C1︸ ︷︷ ︸
p

, π1, ..., π1︸ ︷︷ ︸
t

, g(p+t+1), ..., gm]

violates condition (3.12), since

φ(π1) =
∑

∅6=J⊆{1,...,(p+t)}
ω(∧J)−

∑
∅6=J⊆{1,...,p}

ω(∧J) > 0.

Now we are ready to prove Theorem 10. We first show thatW≤−c is a weighted
clone. It is obvious that W≤−c is closed under conical combinations of weightings.
Thus, we only have to prove that W≤−c is closed under proper superposition.
Consider a proper nonzerom-ary weighting τ = ω[f1, f2, ..., fk], where the nonzero
weighting ω is in W k

≤−c and operations f1, f2, ..., fk are from (∧P1)m. We have to
verify conditions (3.7) and (3.8) for τ .

According to the Claim above, it is sufficient to show that for each binary
operations g1, g2, ..., gm from (∧P1)2 the weighting φ = ω[f1, f2, ..., fk][g1, ..., gm]
satisfies condition (3.12). But the superposition

φ = ω[f1, f2, ..., fk][g1, ..., gm] = ω[f1(g1, ..., gm), ..., fk(g1, ..., gm)],

where f1(g1, ..., gm), ..., fk(g1, ..., gm) are binary operations. Thus, φ satisfies con-
dition (3.12), since ω ∈ W≤−c.

It remains to prove that W≤−c contains all other nontrivial weighted clo-
nes, except the weighted clone W∧. Consider an arbitrary k-ary nonzero pro-
per weighting ω that violates conditions (3.10), (3.11). If ω violates condition
(3.10), then by Theorem 5, wClone(ω) = W∧P1 . Assume that ω violates condi-
tion (3.11). Then there exist two nonempty sets ∅ 6= K ⊆ I ⊆ {1, ..., k}, such
that ∑∅6=J⊆I ω(∧J) > ∑

∅6=J⊆K ω(∧J). Again, without loss of generality assume
that K = {1, ..., p}, I = {1, ..., p + t}. First note that conditions (3.10), (3.11)
imply ω(C1) > 0. If ω(C1) = 0, then ω → ω∧ andW∧ ⊆ wClone(ω). If ω(C1) > 0,
then the conical combination

θ = ω[C1, ..., C1︸ ︷︷ ︸
p

, π1, ..., π1︸ ︷︷ ︸
t

, π(p+t+1), ..., πm] +
∑
∅6=J⊆{1,...,p} ω(∧J)

ω(C1) ω[π2, ..., π2]

is proper weighting with positive weight on the projection π1 and therefore gene-
rates W∧P0 .
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Now to describe all binary weighted clone over the clone ∧P1 we can formulate
the following Theorem 11.

Theorem 11. Every nontrivial binary weighted clone over the clone ∧P1 is either
BP(W∧) or is equal to W (M) for some M that satisfies Property (∗) and is
contained in the square with vertices (1, 0), (0, 0), (0, 1), (1, 1). For every two such
sets M , M ′ the binary weighted clone BP(W∧) is incomparable with W (M) and
W (M) ⊆ W (M ′) if and only if M ⊆M ′.

Proof. Consider an arbitrary binary weighted clone W . From Corollary 7 we
know, that if W contains both a nonzero weighting with the zero weight on the
constant C1 and a nonzero weighting with positive weight on the constant, then
W is the binary part of the trivial weighted clone ∧P1. Indeed, in this case W
contains the weighting ωa1a2 with at least one of the coefficients a1, a2 is greater
than 1, which due to Lemma 7 generates all the weightings. IfW does not contain
a nonzero weighting with positive weight on the constant, then, by the proof of
Lemma 8, W is the binary part of W∧. Therefore, it is sufficient to consider an
arbitrary binary weighted clone W over the clone ∧P1 that contains only binary
weightings with positive weight on the constant C1 (except the zero weighting)
and which, being normed, have coefficients a1, a2 ≤ 1. The rest of the proof is the
same as in Theorem 8.

It follows from Theorem 11 that there are binary weighted clones, which are
not finitely generated. Moreover, there is continuum many binary weighted clones.

To illustrate the lattice of binary weighted clones over the clone ∧P1 we use
the notation of Section 3.2.1.

BP(W∅)

BP(W1,0)

BP(W≤−c)

BP(W∧)

BP(W∧P1)

BP(W 9
10 ,

4
10

)BP(W 9
10 ,

6
10

)

BP(W( 9
10 ,

4
10 ),( 9

10 ,
6

10 ))

BP(W 6
10 ,

6
10

)

Figure 3.8: wedgeThe lattice of binary weighted clones over the clone ∧P1.
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The dual operations to ∧ and C1 are ∨ and C0. Hence the weighted clones
over the clone ∨P0=Clone({∨, C0}) have the same structure as ∧P1.

Corollary 8. There are two atomic weighted clones over the clone ∨P0:

(1) the maximal weighted clone W∨, defined as follows: a k-ary weighting ω is
in W∨ if and only if ω(C0) = 0 and for each nonempty set of coordinates
I ⊆ {1, ..., k} ∑

∅6=J⊆I
ω(∨J) ≤ 0. (3.13)

Moreover, W∨ is generated by the weighting ω∨ = −π1 − π2 + 2∨;

(2) the weighted clone W1,0, defined as follows: for every k

W k
1,0 = {ω ∈ W∨P0 : for every I ⊆ {1, ..., k} such that |I| > 1, ω(∨I) = 0}.

Moreover, W1,0 is generated by the unary weighting ω1,0 = −π1 + C0.

Corollary 9. The maximal weighted clone over the clone ∨P0 that contains all
others nontrivial weighted clones except the weighted clone W∨ is W≤−c, defined
as follows: a k-ary weighting ω is in W≤−c if and only if for each j ∈ {1, ..., k}
and for each nonempty set of coordinates ∅ 6= K ⊆ I ⊆ {1, ..., k}

ω(πj) ≤ 0, (3.14)∑
∅6=J⊆I

ω(∨J) ≤
∑
∅6=J⊆K

ω(∨J). (3.15)

Corollary 10. Every nontrivial binary weighted clone over the clone ∨P0 is either
BP(W∨) or is equal to W (M) for some M that satisfies Property (∗) and is
contained in the square with vertices (1, 0), (0, 0), (0, 1), (1, 1). For every two such
sets M , M ′ the binary weighted clone BP(W∨) is incomparable with W (M) and
W (M) ⊆ W (M ′) if and only if M ⊆M ′.

3.3 Binary weighted clones over the clone ∧P01

We now can combine all previous results to describe the structure of weighted
clones over the clone ∧P01 = Clone({∧, C0, C1}). Before we get to description
we need to redefine several objects, because in the case over the clone with two
constants, we cannot avoid parameter t in set of indices and have to work with
three-dimensional space instead of a plane.

To a binary (possibly improper) weighting ωta1a2 we assign a point (a1, a2, t)
in three-dimensional space Q3

≥0, where

Q3
≥0 = {(a, b, t) ∈ Q3 : a, b, t ≥ 0}.

Thus, for example, a proper weighting ω
1
4
2,3 = −2π1 − 3π2 + 4 ∧ +3

4C0 + 1
4C1

corresponds to the point (2, 3, 1
4), and improper weightings ω0

0,0 = − ∧ +C0,
ω1

0,0 = − ∧+C1 correspond to points (0, 0, 0) and (0, 0, 1) respectively.
We will also use the notation:

Qt=0
≥0 = {(a, b, 0) ∈ Q3 : a, b ≥ 0}.

Qt=1
≥0 = {(a, b, 1) ∈ Q3 : a, b ≥ 0}.
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Definition 30. We say that a subset M of Q3
≥0 satisfies Property (∗∗) if:

(1) M is convex, i.e., for every x1,x2 ∈ M and every t ∈ [0, 1] we have tx1 +
(1− t)x2 ∈M ;

(2) For every t M is symmetric with respect to the line x = y, i.e. (x, y, t) ∈
M ⇔ (y, x, t) ∈M ;

(3) For each t if (x, y, t) ∈M , then M contains the points (0, 1, t) and (1, 0, t).
Moreover, if 0 < t < 1, then (x, y, 0),(x, y, 1) ∈M ;

(4) if M contains a point (x, y, t), then (x, 0, t) ∈M and (0, y, t) ∈M .

For the clone ∧P0,1 we define two objects, M(W ) and W (M) as follows:

Definition 31. Given a binary weighted clone W over a clone C we denote by
M(W ) the set of points in Q3

≥0

M(W ) := {(b1, b2, t) : ωtb1b2 is (possibly improper) weighting
such that ωtb1b2 ← ω ∈ W}.

Definition 32. Given a set M of points in Q3
≥0 we denote by W (M) the set of

proper binary weightings

W (M) := {sωta1a2 : (a1, a2, t) ∈M, s ≥ 0, a1 + a2 ≥ 1} ∪ {the zero weightings}.

We are ready now to work with binary weightings over the clone ∧P01. At
first, instead of one big lemma we will prove several little ones to emphasize their
results in construction of lattice of binary weighted clones.

Now note that since binary part of the clone ∧P01 contains two projections
and three operations ∧, C0, C1, then for each binary weighting there are nk = 25
binary superpositions.

Lemma 10. For every 0 ≤ a1, a2 ≤ 1, 0 < t < 1 the weighting ωta1a2 generates
both weightings ω0

a1a2 and ω1
a1a2 and does not generate ω∧ over the clone ∧P01.

Proof. Consider two superpositions:

ωta1a2 [C0, C0] = −a1C0 − a2C0 + (a1 + a2 − 1)C0 + (1− t)C0 + tC1 =
= −tC0 + tC1,

ωta1a2 [C1, C1] = (1− t)C0 − (1− t)C1.

Therefore, in the weighting ωta1a2 we can remove the positive weight from the
constant C0, as well as from the constant C1. Indeed,

ω0
a1a2 = ωta1a2 + t

1− tω
t
a1a2 [C1, C1],

ω1
a1a2 = ωta1a2 + 1− t

t
ωta1a2 [C0, C0].
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To show that the weighting ωta1a2 does not generate the weighting ω∧ we have to
consider all other possible superpositions of ωta1a2 . There are the trivial superpo-
sition ωta1a2 [π1, π2] and the superposition ωta1a2 [π2, π1] which switches the weights
on projections, there are two superpositions

ωta1a2 [C0, C1] = −a1C0 − a2C1 + (a1 + a2 − 1)C0 + (1− t)C0 + tC1 =
= (a2 − t)C0 + (t− a2)C1,

ωta1a2 [C1, C0] = (a1 − t)C0 + (t− a1)C1,

which are still the weightings θ = −C0 + C1 or η = C0 − C1, multiplied by some
nonnegative constant, there are ten superpositions, i = 1, 2

ωta1a2 [πi, πi] = −πi + (1− t)C0 + tC0,

ωta1a2 [πi, C0] = −a1πi − a2C0 + (a1 + a2 − 1)C0 + (1− t)C0 + tC1 =
= −a1πi + (a1 − t)C0 + tC1,

ωta1a2 [C0, πi] = −a2πi + (a2 − t)C0 + tC1,

ωta1a2 [πi, C1] = −a1πi − a2C1 + (a1 + a2 − 1)πi + (1− t)C0 + tC1 =
= −(1− a2)πi + (1− t)C0 + (t− a2)C1,

ωta1a2 [C1, πi] = −(1− a1)πi + (1− t)C0 + (t− a1)C1,

which have the zero weights on ∧, there are five superpositions, i = 1, 2

ωta1a2 [∧,∧] = − ∧+(1− t)C0 + tC1,

ωta1a2 [πi,∧] = −a1πi + (a1 − 1) ∧+(1− t)C0 + tC1,

ωta1a2 [∧, πi] = −a2πi + (a1 − 1) ∧+(1− t)C0 + tC1,

which have non-positive weights on ∧ and positive weights on the constants and,
finally, there are four superpositions

ωta1a2 [C0,∧] = −a2 ∧+(a2 − t)C0 + tC1,

ωta1a2 [∧, C0] = −a1 ∧+(a1 − t)C0 + tC1,

ωta1a2 [C1,∧] = −(1− a1) ∧+(1− t)C0 + (t− a1)C1,

ωta1a2 [∧, C1] = −(1− a2) ∧+(1− t)C0 + (t− a2)C1,

which have non-positive weights on ∧ and (possibly) non-positive weight on the
one of the constants. As we can see, by any superposition we cannot get positive
weight on ∧ (since a1, a2 ≤ 1) and cannot get negative weights on the both
constants C0, C1 at the same time. We only have the following seven combinations
of weights on constants: (1 − t)C0 + tC1, −C0 + C1, C0 − C1, (a1 − t)C0 + tC1,
(a2 − t)C0 + tC1, (1− t)C0 + (t− a1)C1 and (1− t)C0 + (t− a2)C1. For ωta1a2 we
have ωta1a2(C0) +ωta1a2(C1) = 1 and for every binary operation f, g over the clone
∧P01 we have ωta1a2 [f, g](C0) + ωta1a2 [f, g](C1) ≥ 0. It implies that for any conical
combination of superpositions of ωta1a2 , call it ω, which contains sωta1a2 [π1, π2], s >
0 (because we need ω(∧) > 0), we cannot get ω(C0) = ω(C1) = 0, which means
that by any conical combination of superpositions of ωta1a2 we cannot get a proper
binary weighting with zero weights on the both constants and positive weight on
∧. Therefore ωta1a2 9 ω∧.
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The immediate corollaries of the proof of Lemma 10 are the following:

Corollary 11. For every 0 < t < 1, 0 ≤ s ≤ 1 ωta1a2 → ωsa1a2.

Corollary 12. For every 0 < t < 1 wClone(ωta1a2) = wClone(ω0
a1a2 , ω

1
a1a2).

Proof. It will be sufficient to prove that there {ω0
a1a2 , ω

1
a1a2} → ωta1a2 . Indeed,

ω
1
2
a1a2 = 1

2ω
0
a1a2 + 1

2ω
1
a1a2 ,

and since by Corollary 11 ω
1
2
a1a2 → ωta1a2 , we are done.

Corollary 13. For every 0 < t < 1, ωta1a2 → ωt1,0 and ωt1,0 → ω0
1,0, ω

1
1,0.

Corollary 14. Let ωta1a2 be a normed (possibly improper) weighting over the clone
∧P01 such that 0 < t < 1 and let

P = {(a1, a2, t), (a2, a1, t), (a1, 0, t), (0, a1, t), (a2, 0, t), (0, a2, t),
(1, 0, t), (0, 1, t), (0, 0, t)}.

Then
1. For each point (a′1, a′2, t′) ∈ P there exist binary operations f, g from ∧P01 such
that ωta1a2 [f, g] is a positive multiple of ωt′a′

1a
′
2
.

2. For each binary operations f, g from ∧P01, ωta1a2 [f, g] is either the zero wei-
ghting, or a positive multiple of the weightings θ = −C0 + C1, η = C0 − C1, or a
positive multiple of ωt′a′

1a
′
2
, where (a′1, a′2, t′) ∈ P .

Lemma 11. If 0 < t ≤ 1 and at least one of two coefficients a1, a2 is greater
than 1, then ωta1a2 generates the trivial weighted clone W∧P01.

Proof. Assume that a1 > 1. Consider conical combination

ωta1a2 + (1− t)
t

ω[C0, C0] = ω1
a1a2 .

The claim now follows from Lemma 7.

Corollary 15. Let ω be a proper k-ary weighting over the clone ∧P01. Assume
that ω(C1) 6= 0 and there exists a nonempty set of coordinates I ⊆ {1, ..., k} such
that ∑

∅6=J⊆I
ω(∧I) < −(ω(C0) + ω(C1)).

Then ω generates the trivial weighted clone W∧P01

Proof. The claim follows from Lemma 11 and Corollary 5.

The proof of the following lemma is based mostly on Lemmas 4, 7 in sections
3.1 and 3.2.

Lemma 12. For every nonnegative rationals a1, a2, b1, b2, c1, c2, t such that a1 +
a2 > 1, b1, b2, c1, c2 ≤ 1, b1 + b2 > 1, c1 + c2 > 1, 0 ≤ t ≤ 1 the following is true
over the clone ∧P01:
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(1) ω∧ → ω0
a1a2, ω

0
a1a2 → ω0

1,0, ω1
a1a2 → ω1

1,0;

(2) if t 6= 0, then ω0
a1a2 9 ωtb1b2, ω

0
a1a2 9 ω∧, ω0

1,0 9 ω0
a1a2;

(3) if t 6= 1, then ω1
c1c2 9 ωtb1b2, ω

1
c1c2 9 ω∧, ω1

1,0 9 ω0
b1b2;

(4) if t 6= 0, then ω∧ 9 ωta1a2.

Proof. We do not need to prove the relation →, because we did it in Lemmas
4, 7. To prove the other items we have to consider additional superpositions for
each weighting and show that even by them we will not get new weightings. Note
that the relations ω0

1,0 9 ω0
a1a2 , ω

1
1,0 9 ω0

b1b2 are trivial.

(2) There are nine new superpositions of ω0
a1a2 with constant C1. There are

three superpositions

ω0
a1a2 [C1, C1] = −C1 + C0,

ω0
a1a2 [C0, C1] = −a1C0 − a2C1 + (a1 + a2 − 1)C0 + C0 = −a2C1 + a2C0,

ω0
a1a2 [C1, C0] = −a1C1 + a1C0,

which are the weighting η = C0 − C1, multiplied by some nonnegative
constant, and there are six superpositions, i = 1, 2

ω0
a1a2 [C1, πi] = −a1C1 − a2πi + (a1 + a2 − 1)πi + C0 = (a1 − 1)πi − a1C1 + C0,

ω0
a1a2 [πi, C1] = (a2 − 1)πi − a2C1 + C0,

ω0
a1a2 [C1,∧] = −a1C1 − a2 ∧+(a1 + a2 − 1) ∧+C0 = (a1 − 1) ∧ −a1C1 + C0

ω0
a1a2 [∧, C1] = (a2 − 1) ∧ −a2C1 + C0.

Thus, we still cannot get rid of the positive weight on the constant C0 and
therefore ω0

a1a2 9 ω∧, and cannot get positive weight on the constant C1,
therefore ω0

a1a2 9 ωta1a2 .

(3) There are nine new superpositions of ω1
c1c2 with constant C0. There are three

superpositions

ω1
c1c2 [C0, C0] = −C0 + C1,

ω1
c1c2 [C0, C1] = −c1C0 − c2C1 + (c1 + c2 − 1)C0 + C1 =
− (1− c2)C0 + (1− c2)C1,

ω1
c1c2 [C1, C0] = −(1− c1)C0 + (1− c1)C1,

which are the weighting η = C1 − C0, multiplied by some nonnegative
constant (since 0 ≤ c1, c2 ≤ 1), and there are six superpositions, i = 1, 2

ωtc1c2 [C0, πi] = −c1C0 − c2πi + (c1 + c2 − 1)C0 + C1 = −c2πi − (1− c2)C0 + C1

ωtc1c2 [πi, C0] = −c1πi − (1− c1)C0 + C1

ωtc1c2 [C0,∧] = −c1C0 − b2 ∧+(c1 + c2 − 1)C0 + C1 = −c2 ∧ −(1− c2)C0 + C1

ωtc1c2 = −c1 ∧ −(1− c1)C0 + C1.

As we can see, we cannot remove the positive weight from C1 and therefore
ω1
c1c2 9 ω∧, and cannot get positive weight on C0, therefore ω1

c1c2 9 ωtb1b2 .
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(4) There are only two new superpositions of ω∧ both with the constants C0,
C1:

ω∧[C0, C1] = ω∧[C1, C0] = C0 − C1.

Thus, we still cannot get positive weight on C1 and ω∧ 9 ωta1a2 .

Corollary 16. For every proper binary weighting ωtb1b2 over the clone ∧P01 with
t 6= 0 the following is true:

(1) wClone(ω∧, ωtb1b2) = W∧P01;

(2) for every ω0
a1a2 such that at least one of the coefficients is greater than 1,

wClone(ω0
a1a2 , ω

t
b1b2) = W∧P01;

Proof. (1) It is enough to note that for i = 1, 2 the coefficients (bi + 1) > 1.

(2) Assume that a1 > 1. Then the conical combination

ωt
′

b′
1b

′
2

= 1
a1
ω0
a1a2 + a1 − 1

a1
ωtb1b2 =

= −(1 + b1
(a1 − 1)
a1

)π1 − (a2 + b2(a1 − 1)
a1

)π2+

+ (a2 + b1(a1 − 1) + b2(a1 − 1)
a1

) ∧+a1(1− t) + t

a1
C0 + t(a1 − 1)

a1
C1

is proper normed weighting with t′ 6= 0 and coefficients b′1, b′2, where b′1 =
(1 + b1

(a1−1)
a1

) > 1. By Lemma 11 ωt′b′
1b

′
2
generates W∧P01 .

The next two corollaries follow from the previous Lemma 12 and Lemmas 4
and 7.

Corollary 17. Let ω0
a1a2 be a normed (possibly improper) weighting over the clone

∧P01 and let

P = {(a1, a2, 0), (a2, a1, 0), (a1, 0, 0), (0, a1, 0), (a2, 0, 0), (0, a2, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 0)}.

Then
1. For each point (a′1, a′2, 0) ∈ P there exist binary operations f, g from ∧P01 such
that ω0

a1a2 [f, g] is a positive multiple of ω0
a′

1a
′
2
.

2. For each binary operations f, g from ∧P01, ω0
a1a2 [f, g] is either the zero weighting

or a positive multiple of ω0
a′

1a
′
2
, where (a′1, a′2, 0) ∈ P .

Corollary 18. Let ω1
a1a2 be a normed (possibly improper) weighting over the clone

∧P01 and let

P = {(a1, a2, 1), (a2, a1, 1), (a1, 0, 1), (0, a1, 1), (a2, 0, 1), (0, a2, 1),
(1, 0, 1), (0, 1, 1), (0, 0, 1)}.

Then
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1. For each point (a′1, a′2, 1) ∈ P there exist binary operations f, g from ∧P01 such
that ω1

a1a2 [f, g] is a positive multiple of ω1
a′

1a
′
2
.

2. For each binary operations f, g from ∧P01, ω1
a1a2 [f, g] is either the zero weighting

or a positive multiple of ω1
a′

1a
′
2
, where (a′1, a′2, 1) ∈ P .

Now we are ready to prove the dual lemmas about the subsets of pointsM(W )
and binary weighted clonesW (M). Since from Lemma 12 we know, that for t 6= 0
ω0
a1a2 9 ωta1a2 , ω∧ 9 ωta1a2 , and for 0 ≤ b1, b2 ≤ 1, t 6= 1 ω1

b1b2 9 ωtb1b2 , ω
1
b1b2 9 ω∧

we can split the proof of Lemma 13 into three cases: when M(W ) lies in Qt=0
≥0 ,

when M(W ) lies in Qt=1
≥0 , and otherwise.

Lemma 13. For every nontrivial binary weighted clone W over the clone ∧P01
the set M(W ) satisfies Property (∗∗).

Proof. (1) Assume that the binary weighted clone W does not contain nonzero
weightings with nonzero weight on the constant C1. It means, thatM(W ) ⊆
Qt=0
≥0 . Due to Corollary 17 in that case we are in conditions of Lemma 5,

and, as we have seen, in both cases (W does or does not contain a nonzero
weighting with zero weight on the constant C0) M(W ) satisfies Property
(∗). Due to Definition 30, M(W ) satisfies Property (∗∗) as well.

(2) Now assume that the binary weighted clone W contains only weightings of
the form ω1

b1b2 with 0 ≤ b1, b2 ≤ 1. It means, that M(W ) ⊆ Qt=1
≥0 . Due to

Corollary 18, we can use the same reasoning as in proof of Lemma 8 and
will get that M(W ) satisfies Property (∗). Thus, M(W ) satisfies Property
(∗∗).

(3) Finally, otherwise, ifM(W ) * Qt=0
≥0 andM(W ) * Qt=1

≥0 , thenM(W ) conta-
ins some point (a1, a2, t) with 0 < t < 1, which corresponds to the weighting
ωta1a2 . Indeed, if we assume, that M(W ) ⊆ Qt=0

≥0 ∪ Qt=1
≥0 , then according to

Definition 31 for every points (c1, c2, 0) and (b1, b2, 1) there exist proper bi-
nary weightings ωrc′

1c
′
2
and ωsb′

1b
′
2
∈ W that generate the weightings ω0

c1c2 and
ω1
b1b2 . Even if r = 0, s = 1, since W is closed under nonnegative scaling and

sum of weightings, then the weighting ωta1a2 = 1
2ω

r
c1c2 + 1

2ω
s
b1b2 with t = 1

2 is
in W and therefore the point (a1, a2, t) ∈M(W ).
If at least one of the coefficients a1, a2 > 1, then ωta1a2 generate all weightings
over the clone ∧P01, i.e. wClone(ωta1a2) = W∧P01 . Hence the set M(W ) is
equal to the whole Q3

≥0 and satisfies (∗∗). Otherwise, we have to check that
M(W ) satisfies all conditions (1), (2), (3), (4) in the definition of (∗∗).
We first prove that M(W ) is convex. Again, as we did it in the proof of
Lemma 5, consider any two points (a1, a2, t), (b1, b2, s) ∈ M(W ). Without
loss of generality we can assume, that 0 < t < 1. According to Definition
31 there exist proper binary weightings ωt′a′

1a
′
2
and ωs

′

b′
1b

′
2
∈ W such that

ωt
′

a′
1a

′
2
→ ωta1a2 and ωs′

b′
1b

′
2
→ ωsb1b2 .

Note that for every 0 ≤ a1, a2, 0 ≤ t ≤ 1 the weighting ωta1a2 by the super-
positions ωta1a2 [π1, π1], ωta1a2 [π2, π2] and ωta1a2 [∧,∧] generates the weightings
ωt1,0, ωt0,1 and ωt0,0 respectively, and due to Lemma 10 generates both ω0

a1a2

and ω1
a1a2 . The last two weightings generate the weighting ω0

1,0, ω0
0,1, ω0

0,0
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and ω1
1,0, ω1

0,1, ω1
0,0 respectively. By the transitivity all these weighting are

generated by the weighting ωt′a′
1a

′
2
. Since for every point (a′′1, a′′2, t′′), where

0 ≤ a′′1, a
′′
2, a′′1 + a′′2 ≤ 1 and 0 ≤ t ≤ 1 there exist nonnegative rationals

si, i = 1, ..., 6, where ∑6
i=1 si = 1 such that

ωt
′′

a′′
1a

′′
2

= s1ω
0
1,0 + s2ω

0
0,0 + s3ω

0
0,1 + s4ω

1
1,0 + s5ω

1
0,0 + s6ω

1
0,1

then ωt′a′
1,a

′
2
→ ωt

′′

a′′
1a

′′
2
and M(W ) contains the whole prism with the vertices

(1, 0, 0), (0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 0, 1), (0, 1, 1).
Finally, if a1 + a2 ≥ 1, b1 + b2 ≥ 1, then ωta1a2 , ω

s
b1b2 ∈ Norm(W ). For every

r ∈ [0, 1] the point

r(a1, a2, t) + (1− r)(b1, b2, s) = (ra1 + (1− r)b1, ra2 + (1− r)b2, rt+ (1− r)s)

corresponds to the normed weighting

ω
rt+(1−r)s
ra1+(1−r)b1,ra2+(1−r)b2

= rωta1a2 + (1− r)ωsb1b2 =
= −(ra1 + (1− r)b1)π1 − (ra2 + (1− r)b2)π2+
+ (r(a1 + a2) + (1− r)(b1 + b2)− 1) ∧+
+ (1− r(t+ s)− s)C0 + (rt+ (1− r)s)C1.

Since W is closed under nonnegative scaling and sum of weightings, then
the weighting ω

rt+(1−r)s
ra1+(1−r)b1,ra2+(1−r)b2

∈ Norm(W ) and therefore the point
(ra1+(1−r)b1, ra2+(1−r)b2, rt+(1−r)s) ∈M(W ). Together with the fact
that M(W ) contains the prism with the vertices (1, 0, 0), (0, 0, 0), (0, 1, 0),
(1, 0, 1), (0, 0, 1), (0, 1, 1) it follows that M(W ) is convex.
Now it is sufficient to note that due to Corollaries 14, 17, 18 and Lemma 10
for every (possibly improper) normed weighting ωta1a2 such that (a1, a2, t) ∈
M(W ), M(W ) contains all the points (a′1, a′2, t′), where

(a′1, a′2, t′) ∈ {(a1, a2, t), (a2, a1, t), (a1, 0, t), (0, a1, t), (a2, 0, t),
(0, a2, t), (1, 0, t), (0, 1, t), (0, 0, t)} ∪ {(a1, a2, 0), (a2, a1, 0), (a1, 0, 0), (0, a1, 0),
(a2, 0, 0), (0, a2, 0), (1, 0, 0), (0, 1, 0), (0, 0, 0), (a1, a2, 1)} ∪ {(a2, a1, 1), (a1, 0, 1)
(0, a1, 1), (a2, 0, 1), (0, a2, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)}.

and therefore M(W ) satisfies the conditions (2), (3), (4) in the definition of
(∗∗).
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Figure 3.9: Illustration to Lemma 13.

Lemma 14. For every set M ⊆ Qt=0
≥0 that satisfies Property (∗∗) W (M) is a

binary weighted clone.
For every set M ⊆ Qt=1

≥0 that satisfies Property (∗∗) and is contained in the
square with vertices (1, 0, 1), (0, 0, 1), (0, 1, 1), (1, 1, 1) the set of weightingsW (M)
is a binary weighted clone.

For every set M * Qt=0
≥0 ∪ Qt=1

≥0 that satisfies Property (∗∗) and is contai-
ned in the cube with vertices (1, 0, 0), (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1), (0, 0, 1),
(0, 1, 1), (1, 1, 1) the set of weightings W (M) is a binary weighted clone.

Proof. First, note that due to Corollaries 17 and 18 and Lemmas 6 and 9 we do
not need to prove first two items of the statement, because for planes Qt=0

≥0 and
Qt=1
≥0 satisfying Property (∗∗) is the same as satisfying Property (∗).
Thus, we only have to prove the third item of the statement. Consider a proper

binary weighting ω which is equal to

ω = r1ω1[f1, g1] + r2ω2[f2, g2] + ...+ rnωn[fn, rn]

where r1, r2, ..., rn are nonnegative rationals, ω1, ω2, ..., ωn ∈ W (M) and fi, gi, i =
1, ...n are binary operations from the clone ∧P01. According to Definition 32,
each ωi, i = 1, ..., n is of the form siω

ti
aibi

: (ai, bi, ti) ∈M, s ≥ 0, ai + bi ≥ 1, where
(ai, bi, ti) ∈ M and 0 ≤ t ≤ 1. By Corollaries 14, 17 and 18, for each binary
operations fi, gi from ∧P01, ωtiaibi [fi, gi] is either the zero weighting, or a positive
multiple of the weightings θ = −C0+C1, η = C0−C1 or ω

t′i
a′
ib

′
i
, where (a′i, b′i, t′i) ∈ P .

Assume without loss of generality that ωtiaibi [fi, gi] for every i = 1, ..., n is not the
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zero weighting. Therefore, after renumbering of weightings ωi, ..., ωn for some
m ≤ n and x, y ≥ 0, we can rewrite ω as

ω = r1s1k1ω
t′1
a′

1,b
′
1

+ ...+ rmsmkmω
t′m
a′
mb

′
m

+ x(C0 − C1) + y(−C0 + C1) =
(r1s1k1 + ...+ rmsmkm)(p1ω

t′1
a′

1,b
′
1

+ ...+ pmω
t′m
a′
mb

′
m

) +
+ x(C0 − C1) + y(−C0 + C1) = sωtab + x(C0 − C1) + y(−C0 + C1),

where s = (r1s1k1 + ...+ rmsmkm), (p1 + ...+pm) = 1, a = (p1a
′
1 + ...+pma

′
m), b =

(p1b
′
1 + ...+ pmb

′
m), t = (p1t

′
1 + ...+ pmt

′
m). Since M is convex, then (a, b, t) ∈M

and sωtab ∈ W (M). Since ω is proper weighting, then the weights on the constant
are nonnegative, i.e.

0 ≤ st− x+ y ⇒ 0 ≤ t− (x
s
− y

s
),

0 ≤ s(1− t)− x+ y ⇒ 0 ≤ 1− t− x

s
+ y

s
⇒ t− (x

s
− y

s
) ≤ 1.

Thus, the point (a, b, t′), where t′ = t − (x
s
− y

s
), is still in M , and therefore the

weighting ω = sωt
′
ab is in M(W ). According to Definition 23, W (M) is binary

weighted clone over the clone ∧P0.
As in two previous sections we first formulate some results, that will help us

to construct the whole lattice of binary weighted clones over the clone ∧P01.

Theorem 12. There are two nontrivial atomic weighted clones over the clone
∧P01:

(1) The weighted clone W t=0
1,0 , defined as follows: for every k

(W t=0
1,0 )k = {ω ∈ W∧P01 : for every I ⊆ {1, ..., k} s. t. |I| > 1,

ω(∧I) = ω(C1) = 0}.

Moreover, W t=0
1,0 is generated by the unary weighting ω0

1,0 = −π1 + C0.

(2) The weighted clone W t=1
1,0 , defined as follows: for every k

(W t=1
1,0 )k = {ω ∈ W∧P01 : for every I ⊆ {1, ..., k} s. t. |I| > 1,

ω(∧I) = ω(C0) = 0}.

Moreover, W t=1
1,0 is generated by the unary weighting ω1

1,0 = −π1 + C1.

There are the smallest weighted clone W 0<t<1
1,0 containing both W t=0

1,0 and W t=1
1,0 ,

defined as follows: for every k

(W 0<t<1
1,0 )k = {ω ∈ W∧P01 : for every I ⊆ {1, ..., k} s. t. |I| > 1, ω(∧I) = 0}.

Moreover, W 0<t<1
1,0 is generated by the unary weighting ω

1
2
1,0 = −π1 + 1

2C0 + 1
2C1.

Proof. For the first part of the theorem, note that the proof of the fact, that
W 0

1,0 = wClone(ω0
1,0) and W 1

1,0 = wClone(ω1
1,0), i.e. that W 0

1,0 and W 1
1,0 are actu-

ally weighted clones and are generated by the weightings ω0
1,0 and ω1

1,0 respectively,
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is the same as the corresponding part of the proofs of Theorems 6, 9. Thus, we
only have to show that these weighted clones are atomic (there are no smaller
weighted clones, contained in W 0

1,0 or W 1
1,0), and there is no others atomic weigh-

ted clones, that is, every nontrivial proper weighting generates either both ω0
1,0

and ω1
1,0 or one of them. Indeed, for every k-ary and m-ary weightings τ ∈ W 0

1,0
and θ ∈ W 1

1,0 superpositions

1∑k
i=1 τ(πki )

τ [πk1 , ..., πk1 ] = ω0
1,0 and

1∑m
i=1 θ(πmi )θ[π

m
1 , ..., π

m
1 ] = ω1

1,0.

Therefore, the weighted clones W 0
1,0, W 1

1,0 are atomic. Next, consider an arbitrary
weighting ωta1,a2 . If t = 0 or t = 1, then, due to Lemmas 4 or 7, ωta1,a2 generates
the weighting ω0

1,0 or the weighting ω1
1,0 respectively. If 0 < t < 1, then, due to

Lemma 10, ωta1,a2 generates both weightings ω0
1,0 and ω1

1,0. Thus, there is no other
atomic weighted clones over the clone ∧P01.

To prove the second part of the theorem we first show that W
1
2

1,0 is a weighted
clone generated by ω

1
2
1,0, i.e. W

1
2

1,0 = wClone(ω
1
2
1,0). On the one hand, each k-ary

weighting ω from W
1
2

1,0 is of the form

ω = −a1π1 − a2π2 − ...− akπk + c0C0 + c1C1 =
− a1π1 − a2π2 − ...− akπk + c0C0 + (a1 + a2 + ...+ ak − c0)C1 =

a1(−π1 + 1
2C0 + 1

2C1) + ...+ ak(−πk + 1
2C0 + 1

2C1)+

+ 1
2(

k∑
i=1

ai)C0 −
1
2(

k∑
i=1

ai)C1 − (
k∑
i=1

ai − c0)C0 + (
k∑
i=1

ai − c0)C1 =

a1ω
1
2
1,0[π1] + a2ω

1
2
1,0[π2] + ...+ akω

1
2
1,0[πk] + (

k∑
i=1

ai)ω
1
2
1,0[C1] + 2(

k∑
i=1

ai − c0)ω
1
2
1,0[C0].

Therefore, W
1
2

1,0 ⊆ wClone(ω
1
2
1,0). On the other hand, due to Lemma 2 for

every proper k-ary weighting ω ∈ wClone(ω
1
2
1,0) there exist nonnegative ratio-

nals a1, ..., ak, bI for I ⊆ {1, ..., k}, |I| > 1 and c0, c1 such that ω is equal to:

ω = a1ω
1
2
1,0[π1] + ...+ akω

1
2
1,0[πk] +

∑
I⊆{1,...,k}
|I|>1

bIω
1
2
1,0[∧I ] + c0ω

1
2
1,0[C0] + c1ω

1
2
1,0[C1] =

a1(−π1 + 1
2C0 + 1

2C1) + ...+ ak(−πk + 1
2C0 + 1

2C1)+

+
∑

I⊆{1,...,k}
|I|>1

bI(− ∧I +1
2C0 + 1

2C1) + c0(−1
2C0 + 1

2C1) + c1(1
2C0 −

1
2C1) =

− a1π1 − ...− akπk −
∑

I⊆{1,...,k}
|I|>1

bI ∧I +

+ 1
2(

k∑
i=1

ai +
∑

I⊆{1,...,k}
|I|>1

bI − c0 + c1)C0 + 1
2(

k∑
i=1

ai +
∑

I⊆{1,...,k}
|I|>1

bI + c0 − c1)C1.
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Since ω is proper, we have bI = 0 for all I ⊆ {1, ..., k}, |I| > 1. Thus, every
k-ary weighting ω ∈ wClone(ω

1
2
1,0) is in W

1
2

1,0 and wClone(ω
1
2
1,0) ⊆ W

1
2

1,0. Therefore
wClone(ω

1
2
1,0) = W

1
2

1,0.
Now suppose that there is a smaller weighted cloneW that contains bothW 0

1,0
and W 1

1,0. Then the weightings ω0
1,0 and ω0

1,0 are in W . But since 1
2(ω0

1,0 + ω0
1,0) =

ω
1
2
1,0, then W

1
2

1,0 ⊆ W and it is contradiction.
Theorem 13. The nontrivial weighted clone over the clone ∧P01 that contains
all others nontrivial weighted clones consisting of weightings with zero weight on
the constant C1, except the weighted clone W∧, is WC0 6=0, defined as follows: a
k-ary weighting ω is in WC0 6=0 if and only if for each nonempty set of coordinates
I ⊆ {1, ..., k} and for each nonempty set of coordinates T ⊆ {1, ..., k} such that
T ∩ {j : ω(πkj ) < 0} 6= ∅, ∑

∅6=J⊆I
ω(∧kJ) ≤ 0, (3.16)

∑
∅6=J⊆T

ω(∧kJ) < 0, (3.17)

ω(C1) = 0. (3.18)

Proof. The proof exactly coincides with the proof of Theorem 7, except for the
one point: we have to prove that for every weighting τ ∈ WC0 6=0 with any super-
position we cannot generate the positive weight on the constant C1. But it follows
immediately from transitivity of the relation → and the fact that we cannot get
positive weight on C1 by any superposition of the weighting ω∧.
Theorem 14. The nontrivial weighted clone over the clone ∧P01 that contains
all others nontrivial weighted clones consisting of weightings with zero weight on
the constant C0, except the weighted clone W∧, is W≤−C1, defined as follows: a
k-ary weighting ω is in W≤−C1 if and only if for each j ∈ {1, ..., k} and for each
nonempty set of coordinates ∅ 6= K ⊆ I ⊆ {1, ..., k}

ω(πj) ≤ 0, (3.19)∑
∅6=J⊆I

ω(∧J) ≤
∑
∅6=J⊆K

ω(∧J), (3.20)

ω(C0) = 0. (3.21)

Proof. Again, the proof exactly coincides with the proof of Theorem 10, ex-
cept for the one point: we have to prove that for every weighting τ ∈ W≤−C1

with any superposition we cannot generate the positive weight on the con-
stant C0. Suppose that there exist a k-ary superposition ω = τ [f1, ..., fm] of
τ = ∑

∅6=I⊆{1,...,m} τ(∧mI ) ∧mI +cC1 ∈ Wm
≤−C1 such that ω(C0) > 0. We know that

ω(C0) = τ [f1, ..., fm](C0) =
∑

I′⊆{1,...,m}
I′∩{j:fj=C0}6=∅

τ(∧mI′ ) > 0,

denote {j : fj = C0} = K. But∑
I′⊆{1,...,m}
I′∩K 6=∅

τ(∧mI′ ) =
∑

∅6=J⊆{1,...,m}
ω(∧J)−

∑
∅6=J⊆{1,...,m}\K

ω(∧J) ≤ 0,

since τ satisfies condition (3.20). This is a contradiction and we are done.
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Theorem 15. There are two maximal weighted clones over the clone ∧P01:

(1) the weighted clone W∧ that contains all others weighted clones of weightings
with zero weight on the constant C1, defined as follows: a k-ary weighting ω
is in W∧ if and only if ω(C1) = 0 and for each nonempty set of coordinates
I ⊆ {1, ..., k} ∑

∅6=J⊆I
ω(∧J) ≤ 0. (3.22)

Moreover, W∧ is generated by the weighting ω∧ = −π1 − π2 + 2∧;

(2) the weighted clone WC0 6=0∪C1 6=0 defined as follows: a k-ary weighting ω is in
WC0 6=0∪C1 6=0 if and only if for each j ∈ {1, ..., k} and each nonempty set of
coordinates ∅ 6= K ⊆ I ⊆ {1, ..., k}

ω(πj) ≤ 0, (3.23)∑
∅6=J⊆I

ω(∧J) ≤
∑
∅6=J⊆K

ω(∧J). (3.24)

Proof. We only prove the second part of the theorem, because the first part follows
immediately from Theorem 6 and Corollary 16.

At first, we prove an auxiliary statement.
Claim 2. A k-ary weighting ω is in WC0 6=0∪C1 6=0 if and only if for each binary
operations g1, g2, ..., gk from (∧P01)2 a weighting φ = ω[g1, g2, ..., gk] for i = 1, 2
satisfies condition

−φ(C0)− φ(C1) ≤ φ(πi) ≤ 0. (3.25)

Proof of Claim 2. Consider an arbitrary k-ary weightings ω ∈ WC0 6=0∪C1 6=0 and
the superposition φ = ω[g1, g2, ..., gk], where g1, g2, ..., gk ∈ (∧P01)2. There are
five binary operations containing in (∧P01): the two projections π1, π2, the meet
operation ∧ and the constant operations C0, C1. Let TC0 = {j : gj = C0}, TC1 =
{j : gj = C1}, Tπi = {j : gj = πi}. Note that

φ(πi) =
∑

∅6=J⊆TC1∪Tπi ,
J∩Tπi 6=∅

ω(∧J) =
∑

∅6=J⊆TC1∪Tπi

ω(∧J)−
∑

∅6=J⊆TC1

ω(∧J) ≤ 0,

since ω satisfies condition (3.24) and

φ(C0) =
∑

∅6=J⊆{1,...,k},
J∩TC0 6=∅

ω(∧J) + ω(C0) =

=
∑

∅6=J⊆{1,...,k}
ω(∧J)−

∑
∅6=J⊆{1,...,k}\TC0

ω(∧J) + ω(C0),

φ(C1) =
∑

∅6=J⊆TC1

ω(∧J) + ω(C1)

Therefore,

φ(πi) + φ(C0) + φ(C1) =
∑

∅6=J⊆TC1∪Tπi

ω(∧J)−
∑

∅6=J⊆TC1

ω(∧J)+

+
∑

∅6=J⊆{1,...,k}
ω(∧J)−

∑
∅6=J⊆{1,...,k}\TC0

ω(∧J) + ω(C0) + ω(C1) +
∑

∅6=J⊆TC1

ω(∧J).
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Note that ω(C0) +ω(C1) = −∑∅6=J⊆{1,...,k} ω(∧J) and TC1 ∪Tπi ⊆ {1, ..., k} \TC0 .
Then

φ(πi) + φ(C0) + φ(C1) =
∑

∅6=J⊆TC1∪Tπi

ω(∧J)−
∑

∅6=J⊆{1,...,k}\TC0

ω(∧J) ≥ 0,

again since ω satisfies condition (3.24). Thus, φ satisfies conditions (3.25).
On the other hand, assume that proper weighting ω is not in ω ∈ WC0 6=0∪C1 6=0.

If ω violates condition (3.23), then there exists j ∈ {1, ..., k} such that ω(πj) > 0.
Then the superposition

φ = ω[π1, π1, ...π2, ..., π1]
with the second projection on the j-th coordinate violates condition (3.25), since
φ(π2) > 0. If ω violates condition (3.24), then there exist two nonempty sets
∅ 6= K ⊆ I ⊆ {1, ..., k}, such that ∑∅6=J⊆I ω(∧J) >

∑
∅6=J⊆K ω(∧J). Without

loss of generality we can assume that K = {1, ..., p}, I = {1, ..., p + t} for some
0 < p, t. Then superposition

φ = ω[C1, ..., C1︸ ︷︷ ︸
p

, π1, ..., π1︸ ︷︷ ︸
t

, g(p+t+1), ..., gm]

violates condition (3.25), since

φ(π1) =
∑

∅6=J⊆{1,...,(p+t)}
ω(∧J)−

∑
∅6=J⊆{1,...,p}

ω(∧J) > 0.

Let us prove that WC0 6=0∪C1 6=0 is a weighted clone. WC0 6=0∪C1 6=0 is closed under
conical combinations of weightings, thus, we only have to prove that WC0 6=0∪C1 6=0
is closed under proper superposition. But it is an easy consequence from Lemma
2. Therefore, WC0 6=0∪C1 6=0 is a weighted clone.

It remains to prove that WC0 6=0∪C1 6=0 is maximal. Suppose that there exist
nontrivial weighted cloneW containingWC0 6=0∪C1 6=0. SinceW 6= WC0 6=0∪C1 6=0, then
W contains nonzero k-ary weighting ω that violates conditions (3.23), (3.24). If ω
violates condition (3.23), then W = W∧P01 and it is contradiction. Suppose that
ω violates condition (3.24), there exist two nonempty sets ∅ 6= K ⊆ I ⊆ {1, ..., k},
such that ∑∅6=J⊆I ω(∧J) > ∑

∅6=J⊆K ω(∧J), K = {1, ..., p}, I = {1, ..., p + t}. The
conical combination

θ = ω[C1, ..., C1︸ ︷︷ ︸
p

, π2, ..., π2︸ ︷︷ ︸
t

, π(p+t+1), ..., πm]

has a positive weight on the projection π2, but might have a negative weight on
the constant C1. We can fix it by the following way. Note that the weighting
ω1

1,0 = −π1 + C1 is in WC0 6=0∪C1 6=0. Since WC0 6=0∪C1 6=0 ( W , then ω1
1,0 ∈ W . Now

consider a conical combination

θ′ = ω[C1, ..., C1︸ ︷︷ ︸
p

, π2, ..., π2︸ ︷︷ ︸
t

, π(p+t+1), ..., πm] +
( ∑
∅6=J⊆{1,...,p}

ω(∧J) + ω(C1)
)
ω1

0,1,

which is proper and has a positive weight on the projection π2. Thus W = W∧P01 ,
and it is contradiction. Therefore, WC0 6=0∪C1 6=0 is maximal.
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We are finally ready to formulate the theorem that describe all binary weighted
clones over the clone ∧P01.

Theorem 16. Every nontrivial binary weighted clone over the clone ∧P01 is
either BP(W∧) or is equal to W (M) for some M such that:

(1) M ⊆ Qt=0
≥0 and satisfies Property (∗∗) or

(2) M ⊆ Qt=1
≥0 is contained in the square with vertices (1, 0, 1), (0, 0, 1), (0, 1, 1),

(1, 1, 1) and satisfies Property (∗∗) or

(3) M ⊆ Q3
≥0 is contained in the cube with vertices (1, 0, 0), (0, 0, 0), (0, 1, 0),

(1, 1, 0), (1, 0, 1), (0, 0, 1), (0, 1, 1), (1, 1, 1) and satisfies Property (∗∗).

For every such set M W (M) ( BP(W∧) if and only if M ⊆ Qt=0
≥0 . For every

two such sets M , M ′ W (M) ⊆ W (M ′) if and only if M ⊆M ′.

There is continuum many binary weighted clones. These binary weighted clo-
nes are generated by different (infinite) sets of normed binary weightings.

Proof. Consider an arbitrary binary weighted clone W . We know that every non-
zero binary weighting with the zero weights on the both constants C0, C1 gene-
rates ω∧. Thus, if W contains ω, then W is the binary part of W∧. Therefore,
it is sufficient to consider an arbitrary binary weighted clone W over the clone
∧P01, that contains only binary weightings with nonzero weight on the constants
(except the zero weighting).

Due to Lemma 13, the set M(W ) satisfies (∗∗). If W contains only binary
weighting with nonzero weight on the constant C0 and zero weight on the con-
stant C1, then M(W ) ⊆ Qt=0

≥0 . From Lemma 11 we know that if W contains the
weighting ω such that, being normed, has coefficient 0 < t ≤ 1 and at least one of
two coefficients a1, a2 greater than 1, thenW is a binary part ofW∧P01 . Therefore,
it is sufficient to consider a binary weighted clone W , that contains only binary
weighting ω with nonzero weight on the constant C1 and zero weight on the
constant C0 such that, being normed, have coefficients a1, a2 ≤ 1, and a binary
weighted clone W , that contains binary weighting ω such that ω(C0)+ω(C1) > 0
and ω, being normed, has coefficients a1, a2 ≤ 1. In first caseM(W ) ⊆ Qt=1

≥0 and is
contained in the square with vertices (1, 0, 1), (0, 0, 1), (0, 1, 1),(1, 1, 1), and in the
second case M(W ) ⊆ Q3

≥0 is contained in the cube with vertices (1, 0, 0), (0, 0, 0),
(0, 1, 0), (1, 1, 0),(1, 0, 1),(0, 0, 1), (0, 1, 1), (1, 1, 1).

We have to prove now that in the all these cases W (M(W )) = W . Consider
an arbitrary nonzero binary weighting ω ∈ W . Since ω(C0) + ω(C1) 6= 0 then
ω = sωta1a2 for some nonnegative rationals s, a1, a2, 0 < t < 1 and therefore
(a1, a2, t) ∈M(W ). But since ω is proper then a1 +a2 ≥ 1 and thus ω = sωta1a2 ∈
W (M(W )). On the other hand, according to Definition 32 each binary weighting
ω ∈ W (M(W )) is proper and of the form sωta1a2 for some s ≥ 0 and (a1, a2, t) ∈
M(W ), where a1 + a2 ≥ 1, 0 < t < 1, which implies that ωta1a2 ∈ Norm(W ).
Since W is closed under nonnegative scaling, then ω = sωta1a2 ∈ W . Therefore,
W (M(W )) = W .

To prove the rest note that BP(W∧) contains all other binary weighted clones
with zero weight on the constant C1 and M(BP(W∧)) is the whole Qt=0

≥0 . From
Corollary 16 we know, that if W contains both a nonzero weighting with zero
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weight on the constant C1 and a nonzero weighting with positive weight on the
constant C1, then W is the binary part of the trivial weighted clone ∧P1. Hence,
ifM ⊆ Qt=1

≥0 thenW (M) is incomparable with BP(W∧). Finally, from Lemma 13
we know, that if M * Qt=0

≥0 and M * Qt=1
≥0 then M intersect with Qt=0

≥0 and due
to Lemma 14 W (M ∩ Qt=0

≥0 ) is a weighted clone. Finally, note that if M ⊆ M ′,
then W (M) ⊆ W (M ′) directly from the definition of W (M). Otherwise, if there
exist a point (a1, a2, t) ∈ M such that (a1, a2, t) /∈ M ′, then, for every s ≥ 0, the
weighting sωta1a2 is in W (M) but not in W (M ′). Therefore W (M) * W (M ′).

To illustrate the lattice of binary weighted clones over the clone ∧P01 we
introduce the following notation. Given a binary weighting in normed form ωta1a2

we denote the binary weighted clone generated by this weighting by W t=0
a1a2 , if

t = 0, by W t=1
a1a2 , if t = 1 and W 0<t<1

a1a2 otherwise (Given a set of binary weightings
in normed form ωta1a2 , ω

t
b1b2 , ... we denote the binary weighted clone, generated

by those weightings by W t=0
a1a2,b1b2,..., W

t=1
a1a2,b1b2,... and W

0<t<1
a1a2,b1b2,... respectively).

BP(W∅)

BP(W∧P01)

BP(W 0<t<1
a1a2 )

BP(WC0 6=0∪C1 6=0)

BP(W 0<t<1
1,0 )

BP(W t=1
1,0 )

BP(W t=1
a1a2)

BP(W≤−C1)

BP(W t=0
1,0 )

BP(W t=0
a1a2)

BP(W t=0
1,1 )

BP(WC0 6=0)

BP(W∧)

Figure 3.10: The lattice of binary weighted clones over the clone ∧P01.
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The dual clone ∨P01 has the similar structure: in all claims we just switch the
constants C0 to C1 and vise versa.

Corollary 19. There are two nontrivial atomic weighted clones over the clone
∨P01:

(1) The weighted clone W t=0
1,0 , defined as follows: for every k

(W t=0
1,0 )k = {ω ∈ W∨P01 : for every I ⊆ {1, ..., k} s. t. |I| > 1,

ω(∨I) = ω(C1) = 0}.

Moreover, W t=0
1,0 is generated by the unary weighting ω0

1,0 = −π1 + C0.

(2) The weighted clone W t=1
1,0 , defined as follows: for every k

(W t=1
1,0 )k = {ω ∈ W∨P01 : for every I ⊆ {1, ..., k} s. t. |I| > 1,

ω(∨I) = ω(C0) = 0}.

Moreover, W t=1
1,0 is generated by the unary weighting ω1

1,0 = −π1 + C1.

There are the smallest weighted clone W 0<t<1
1,0 containing both W t=0

1,0 and W t=1
1,0 ,

defined as follows: for every k

(W 0<t<1
1,0 )k = {ω ∈ W∨P01 : for every I ⊆ {1, ..., k} s. t. |I| > 1, ω(∨I) = 0}.

Moreover, W 0<t<1
1,0 is generated by the unary weighting ω

1
2
1,0 = −π1 + 1

2C0 + 1
2C1.

Corollary 20. The nontrivial weighted clone over the clone ∨P01 that contains
all others nontrivial weighted clones consisting of weightings with zero weight on
the constant C0, except the weighted clone W∨, is WC1 6=0, defined as follows: a
k-ary weighting ω is in WC1 6=0 if and only if for each nonempty set of coordinates
I ⊆ {1, ..., k} and for each nonempty set of coordinates T ⊆ {1, ..., k} such that
T ∩ {j : ω(πkj ) < 0} 6= ∅, ∑

∅6=J⊆I
ω(∨kJ) ≤ 0, (3.26)

∑
∅6=J⊆T

ω(∨kJ) < 0, (3.27)

ω(C0) = 0. (3.28)

Corollary 21. The nontrivial weighted clone over the clone ∨P01 that contains
all others nontrivial weighted clones consisting of weightings with zero weight on
the constant C1, except the weighted clone W∨, is W≤−C0, defined as follows: a
k-ary weighting ω is in W≤−C0 if and only if for each j ∈ {1, ..., k} and for each
nonempty set of coordinates ∅ 6= K ⊆ I ⊆ {1, ..., k}

ω(πj) ≤ 0, (3.29)∑
∅6=J⊆I

ω(∨J) ≤
∑
∅6=J⊆K

ω(∨J), (3.30)

ω(C1) = 0. (3.31)
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Corollary 22. There are two maximal weighted clones over the clone ∨P01:

(1) the weighted clone W∨ that contains all others weighted clones of weightings
with zero weight on the constant C0, defined as follows: a k-ary weighting ω
is in W∨ if and only if ω(C0) = 0 and for each nonempty set of coordinates
I ⊆ {1, ..., k} ∑

∅6=J⊆I
ω(∨J) ≤ 0. (3.32)

Moreover, W∨ is generated by the weighting ω∨ = −π1 − π2 + 2∨;

(2) the weighted clone WC0 6=0∪C1 6=0 defined as follows: a k-ary weighting ω is in
WC0 6=0∪C1 6=0 if and only if for each j ∈ {1, ..., k} and each nonempty set of
coordinates ∅ 6= K ⊆ I ⊆ {1, ..., k}

ω(πj) ≤ 0, (3.33)∑
∅6=J⊆I

ω(∨J) ≤
∑
∅6=J⊆K

ω(∨J). (3.34)

Corollary 23. Every nontrivial binary weighted clone over the clone ∨P01 is
either BP(W∨) or is equal to W (M) for some M such that:

(1) M ⊆ Qt=1
≥0 and satisfies Property (∗∗) or

(2) M ⊆ Qt=0
≥0 is contained in the square with vertices (1, 0, 1), (0, 0, 1), (0, 1, 1),

(1, 1, 1) and satisfies Property (∗∗) or

(3) M ⊆ Q3
≥0 is contained in the cube with vertices (1, 0, 0), (0, 0, 0), (0, 1, 0),

(1, 1, 0), (1, 0, 1), (0, 0, 1), (0, 1, 1), (1, 1, 1) and satisfies Property (∗∗).

For every such set M W (M) ( BP(W∨) if and only if M ⊆ Qt=1
≥0 . For every

two such sets M , M ′ W (M) ⊆ W (M ′) if and only if M ⊆M ′.
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Conclusion
In this thesis, we introduced the concept of binary weighted clones and characte-
rized all binary weighted clones and some particular weighted clones over certain
clones on Boolean domain, namely ∧P0, ∧P1, ∧P01 and dually ∨P0, ∨P1, ∨P01.
However, a complete description of all weighted clones remains widely open.

We believe that partial description of weighted clones over the clones AP0 and
AP1 is possible by using the approach of this thesis.

For richer clones, e.g. MP , MP∞0 , MP∞1 , more sophisticated methods seem
to be necessary.
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