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Introduction
Constraint satisfaction problems (CSPs) form a wide class of decision problems, first stud-
ied in 1998 by Feder and Vardi in their attempt to discover a large subclass of NP that
exhibits a dichotomy [4]. The problem CSP(Γ) consists of a finite set D and a finite
collection Γ = {R1, ..., Rn} of relations on D, or constraint language. The question is,
given as input a list of variables V and a list of constraints C = {C1, ..., Cm} - pairs of
tuples of distinct variables and relations Ri, whether there is an assignment of variables
to values in D satisfying the given constraints. If such an assignment exists, an instance
is called satisfiable and unsatisfiable otherwise. The equivalent definition is formulated
as a homomorphism problem between relational structures. The obvious example is the
H-coloring problem, where H is a simple undirected graph without loops, whose vertices
are considered as different colors. The H-coloring of a graph G is an assignment of colors
to the vertices of G such that adjacent vertices of G obtain adjacent colors. The gener-
alization of this problem is a homomorphism problem from an input directed graph to a
fixed target digraph. It is known that the latter problem is universal: for any constraint
language Γ, CSP(Γ) is logspace equivalent to a homomorphism problem for some digraph
H [1].

The first dichotomy result was formulated by Schaefer in 1978 for a problem over a
binary domain called Generalized Satisfiability [8]. The second result of this form was
proved by Hell and Nešetřil in 1990 for the H-coloring problem [6]. Feder and Vardi
conjectured that the whole class of CSPs satisfies the general dichotomy between P and
NP [4], i.e. for a given Γ the problem is either in P or is NP-complete. The proof of this
conjecture was presented in 2017 by Zhuk [10] and Bulatov [2].

Zhuk’s algorithm solves the problem of whether there exists a homomorphism from
X to A for any tractable CSP(A) in polynomial time in size of X , for any fixed A. If
an instance is satisfiable, then the algorithm produces a solution, i.e. a polynomial-size
witness of an affirmative answer that one can independently check in polynomial time. The
qualification ’independent’ means that we can check the validity of the witness irrespective
of how it was obtained, i.e. not understanding anything about Zhuk’s algorithm. That is
not the case for unsatisfiable instances. The only apparent polynomial size witness is the
particular computation of Zhuk’s algorithm on the instance.

In our work, we use some proof complexity methods (formalization in theories of
bounded arithmetic, propositional translations, etc.) to show that the algorithm may be
appended to provide an independent proof of the correctness of the algorithm for negative
answers too. The witness in the case of the homomorphism problem between relational
structures is a short propositional proof of a formula ¬HOM(X ,A), encoding that there
is no homomorphism from X to A, in a particular well-known proof system, namely the
quantified propositional calculus G [7]. When relational structures are directed graphs, for
example, for a given digraph X , the non-existence of a homomorphism from X to A can
be expressed by the fact that a simple and transparent (see also Definition 2.2 in Chapter
1) set of clauses is not satisfiable: it is built from propositional atoms pij , one for each
vertex i in X and vertex j in A, and says that the set of pairs (i, j) for which pij is true is
the graph of a map from X to A, which is a homomorphism. Namely, for any two digraphs
X = (VX , EX ), A = (VA, EA), consider the following set of clauses:

• a clause ⋁︁
j∈VA

pi,j for each i ∈ VX (every vertex of X is sent to some vertex of A);

• a clause ¬pi,j1 ∨ ¬pi,j2 for each i ∈ VX and j1, j2 ∈ VA with j1 ̸= j2 (the map is
well-defined);
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• a clause ¬pi1,j1 ∨ ¬pi2,j2 for every edge (i1, i2) ∈ EX and (j1, j2) /∈ EA (a map is
indeed a homomorphism).

A propositional refutation of these clauses in a transparent propositional calculus, whose
soundness is obvious, thus indeed serves as a simple (and simple to check) witness for a
negative answer to the algorithm.

The thesis consists of three chapters. The first two are papers we wrote while working
on the project, the third one is a mathematically complete last part of the project that
will be developed into a paper. The notation is consistent throughout the thesis except
for minor differences, which are nonetheless mentioned and explained in each part. In
particular, in the third part, the reasoning is based on the notation introduced earlier.

The bulk of the work consists of formalizing the soundness of Zhuk’s algorithm in
bounded arithmetic theory. By soundness, we mean the formula RejectA(X ,W ) −→
¬HOM(X ,A), where RejectA(X ,W ) formalizes naturally that W is the algorithm com-
putation on input X that results in rejection. The formalization is for each specific A
separate; i.e. A does not feature as a variable in the formalization (and neither does it in
Zhuk’s algorithm).

The first chapter consists of the paper ’H-Colouring Dichotomy in Proof Complexity’
[5] that deals with a specific case of the H-coloring problem and is based on the result of
Hell and Nešetřil [6]. The soundness of the associated algorithm can be formalized in a
simple two-sorted theory V 0 [3], which yields short propositional proofs in R∗(log), a mild
extension of resolution.

The general case is divided into the second and third chapters. The second chapter
consists of the paper ’Proof complexity of CSP’ and we prove there over theory V 1 [3] that
the soundness of Zhuk’s algorithm follows from three axiom schemes stating non-trivial
facts from universal algebra.

These axiom schemes are then proved in the third chapter, ’Proof complexity of uni-
versal algebra in a proof of the CSP dichotomy’. Here, we had to use a stronger theory
than V 1, namely theory W 1

1 [9]. Using this theory yields as witnesses propositional proofs
in calculus G. We show in this chapter that all notions used in the proof of the soundness
of Zhuk’s algorithm in [10] can be formalized using bounded quantifier formulas (two or
three sorted) and that the statements about them can be proved in the theory. To show
the latter, we selected a number of statements whose proofs represent all types of argument
(in particular, all types of inductive argument) in [10]. To show that the formalization
exists, we write the formal definitions of all objects used. This is because we need to know
their quantifier complexity (various bounded arithmetic theories differ mainly in the class
of formulas for which they assume induction).

The thesis is concluded with a short chapter that points out possible continuations of
this research.
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1. H-Colouring Dichotomy in
Proof Complexity
This chapter is formed by the paper ’H-Colouring Dichotomy in Proof Complexity’ pub-
lished in Journal of Logic and Computation. The numbering of definitions and statements
is adjusted to make the thesis consistent.
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H-colouring Dichotomy in Proof Complexity
Azza Gaysin

Department of Algebra, Faculty of Mathematics and Physics
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Abstract

TheH-colouring problem for undirected simple graphs is a computational prob-
lem from a huge class of the constraint satisfaction problems (CSP): anH-colouring
of a graph G is just a homomorphism from G to H and the problem is to decide
for fixed H, given G, if a homomorphism exists or not.

The dichotomy theorem for the H-colouring problem was proved by Hell and
Nešetřil [9] in 1990 (an analogous theorem for all CSPs was recently proved by
Zhuk [14] and Bulatov [3]) and it says that for each H the problem is either p-time
decidable or NP -complete. Since negations of unsatisfiable instances of CSP can
be expressed as propositional tautologies, it seems to be natural to investigate the
proof complexity of CSP.

We show that the decision algorithm in the p-time case of the H-colouring
problem can be formalized in a relatively weak theory and that the tautologies
expressing the negative instances of such H have polynomial proofs in the propo-
sitional proof system R∗(log), a mild extension of resolution. In fact, when the
formulas are expressed as unsatisfiable sets of clauses, they have p-size resolution
proofs. To establish this, we use a well-known connection between theories of
bounded arithmetic and propositional proof systems. This upper bound follows
also from a different construction in [1].

We complement this result with a lower bound result that holds for many weak
proof systems for a special example of NP -complete case of the H-colouring prob-
lem, using known results about the proof complexity of the Pigeonhole Principle.

The main goal of our work is to start the development of some of the theories
beyond the CSP dichotomy theorem in bounded arithmetic. We aim eventually – in
subsequent work – to formalize in such a theory the soundness of Zhuk’s algorithm
from [14], extending the upper bound proved here from undirected simple graphs
to the general case of directed graphs in some logical calculi.

1.1 Introduction

The constraint satisfaction problem (CSP) is a computational problem. The problem is
in finding an assignment of values to a set of variables such that this assignment satisfies
some specified feasibility conditions. If such an assignment exists, we call the instance of
CSP satisfiable and unsatisfiable otherwise. One can also define CSP through the homo-
morphism between relational structures: in the constraint satisfaction problem associated

Vol. 31, No. 5, © The Author(s) 2021. Published by Oxford University Press. All rights reserved. For
permissions, please e-mail: journals.permission@oup.com. Advance Access Publication on 24 April 2021
https://doi.org/10.1093/logcom/exab028
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with a structure H, denoted by CSP(H) the question is, given a structure G over the same
vocabulary, whether there exists a homomorphism from G to H. It turns out that all CSPs
can be classified with only two complexity classes: there are either polynomial-time CSPs,
or NP -complete CSPs. This dichotomy was conjectured by Feder and Vardi in 1998 [7]
and recently proved by Zhuk [14] and Bulatov [3].

The H-colouring problem is essentially CSP(H) on relational structures that are undi-
rected graphs. Its computational complexity was investigated years ago, and the di-
chotomy theorem for the H-colouring problem was proved by Hell and Nešetřil [9] in
1990.

Theorem 1 (The dichotomy theorem for the H-colouring problem, [9]). If H is bipar-
tite, then the H-colouring problem is in P . Otherwise, the H-colouring problem is NP -
complete.

There is an easy H-colourability test when H is bipartite.

Lemma 1 ([9]). For all graphs G,H, if H is bipartite, then G is H-colorable if and only
if G is bipartite graph.

Instances of CSP(H) can be expressed by propositional formulas: denote by α(G,H)
the propositional formula expressing that there is a homomorphism from G to H (see
Definition 2). If the instance of CSP is unsatisfiable, then ¬α(G,H) is a tautology (for the
H-colouring problem we get a tautology any time we consider the bipartite graph H and
the nonbipartite graph G). From this point of view, it is natural to ask about the proof
complexity of those instances. A common way to do this is to formalize the sentence in
some weak theory of bounded arithmetic, and first prove that this universal statement is
valid in all finite structures. Then it could be translated into a family of propositional
tautologies that will have short proofs in the corresponding proof system. The simpler the
theory, the weaker the propositional proof system will be.

If H-colouring is NP -complete, then the negative instances (graphs G that cannot
be H-colored) form a coNP -complete set, and hence, unless NP = coNP , they cannot
have poly-size proofs in any propositional proof system. In the case when H-colouring is
tractable (i.e. we have a p-time algorithm distinguishing positive and negative instances),
we shall prove that the negative instances, when represented by unsatisfiable sets of clauses,
actually have p-size resolution refutations. A resolution proof is a much more rudimentary
object than a run of a p-time algorithm: it operates just on clauses. (In fact, the algorithm
can be reconstructed from the proof via feasible interpolation, see Section 1.3.3.2).

In this paper, we show that the decision algorithm in the p-time case of theH-colouring
problem (i.e. the case where H is a bipartite graph) can be formalized in a relatively weak
two-sorted theory V 0 [5], which is quite convenient for formalizing sets of vertices and
relations between them, and proved by using only formulas of restricted complexity in
the Induction scheme. Therefore, tautologies that express negative instances of such H
hence have polynomial proofs in the propositional proof system R∗(log), a mild extension
of resolution. In fact, when the formulas are expressed as unsatisfiable sets of clauses,
they have p-size resolution proofs. We are interested in a more narrow interpretation of
the problem, namely, in the case when a bipartite graph H is fixed. What we prove is in
fact more general: our arguments work for variable bipartite graphs, but we do not expect
that something similar could happen for general CSP.

Although the use of the theory of bounded arithmetic for establishing this result (i.e.
an upper bound) may seem redundant (indeed, one could directly construct short propo-
sitional proofs for the p-case of the H-colouring problem), we believe that this approach
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provides the following advantages. The known proofs of CSP dichotomy for general rela-
tional structures (see [14], [3]) use advanced notions from universal algebra, such as poly-
morphism, weak near-unanimity operation, cycle-consistency, absorption, and so forth,
that cannot be easily handled directly in propositional logic. To establish the analogous
result for the general CSP, one will require the framework allowing one to formalize these
advanced notions, and the apparatus of bounded arithmetic is capable of doing that.

We shall complement the upper bound for the H-colouring problem by a lower bound
by giving examples of graphs H and G for which CSP(H) is NP -complete and for which
any proof of the tautologies expressing that G /∈ CSP(H) must have exponential size length
in the constant-depth Frege system (which contains R∗(log)) and some other well-known
proof systems. This is based on the proof complexity of the Pigeonhole Principle.

The paper is organized as follows. In Section 1.2 we give some common definitions from
propositional proof complexity and theory of bounded arithmetic, the definition of CSP in
terms of homomorphisms, and explain how to express instances of CSP by propositional
formulas. In Section 1.3 we formalize the H-colouring problem in theory V 0 and prove all
auxiliary lemmas and the main universal statement. Then we proceed with the translation
of the main universal statement into propositional tautologies and prove that for any non-
bipartite graph G and bipartite graph H the propositional family, expressing that there is
no homomorphism from G to H, has polynomial size bounded depth Frege proofs. Some
definitions and material here about translations are quite standard in proof complexity
but maybe not so in the CSP community, hence we decided to include them explicitly. We
end the section with some remarks about the collateral results and minor improvement
of the upper bound. In Section 1.4 we consider NP -complete case of the H-colouring
problem and known lower bounds for one suitable example. In Section 1.5 we discuss
open questions and the future direction of research.

1.2 Preliminaries

1.2.1 Constraint satisfaction problems and the H-colouring problem

There are many equivalent definitions of the constraint satisfaction problem. Here, we will
use the definition in terms of homomorphisms.

Definition 1 (Constraint satisfaction problem).

• A vocabulary is a finite set of relational symbols R1,..., Rn each of which has a fixed
arity.

• A relational structure over the vocabulary R1,..., Rn is the tupleH = (H,RH
1 , ..., R

H
n )

such that H is a non-empty set, called the universe of H, and each RH
i is a relation

on H having the same arity as the symbol Ri.

• For G, H being relational structures over the same vocabulary R1,..., Rn a ho-
momorphism from G to H is a mapping ϕ : G → H from the universe G to H
such that for every m-ary relation RG and every tuple (a1, ..., am) ∈ RG we have
(ϕ(a1), ..., ϕ(am)) ∈ RH.

Let H be a relational structure over a vocabulary R1,..., Rn. In the constraint satisfaction
problem associated with H, denoted by CSP(H) the question is, given a structure G over
the same vocabulary, whether there exists a homomorphism from G to H. If the answer
is positive, then we call the instance G satisfiable and unsatisfiable otherwise [2].
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The H-colouring problem could be described as follows: let H = (VH, EH) be a simple
undirected graph without loops, whose vertices we consider as different colors. An H-
colouring of a simple undirected graph G = (VG , EG) without loops is an assignment
of colors to the vertices of G such that adjacent vertices of G obtain adjacent colors.
Since a graph homomorphism h : G → H is a mapping of VG to VH such that if g, g′

are adjacent vertices of G, then so are h(g), h(g′), it is easy to see that an H-colouring
of G is just a homomorphism G → H. A graph H can be considered as a relational
structure H = (VH, EH) with only one binary symmetric irreflexive relation EH(i, j) (to
i, j be adjacent vertices). Thus, the problem of H-colouring of a graph G is equivalent to
CSP(H).

To express an instance of CSP(H) by the propositional formula, we use the following
construction [1]. For any sets VG and VH by V (VG , VH) we denote a set of propositional
variables: for every v ∈ VG and every u ∈ VH there is a variable xv,u in the set V (VG , VH).
A variable xv,u is assigned the truth value 1 if and only if the vertex v is mapped to vertex
u. To every graph G = (VG , EG) we assign a set of clauses CNF (G,H) over the variables
in V (VG , VH) in such a way that there is a one-to-one correspondence between the truth
valuations of the variables in V (VG , VH) satisfying this set and the homomorphisms from
G to H.

Definition 2. For any two graphs G = (VG , EG), H = (VH, EH), by CNF (G,H) we denote
the following set of clauses,

• a clause ⋁︁
u∈VH

xv,u for each v ∈ VG ;

• a clause ¬xv,u1 ∨ ¬xv,u2 for each v ∈ VG and u1, u2 ∈ VH with u1 ̸= u2;

• a clause ¬xv1,u1 ∨ ¬xv2,u2 for any adjacent vertices v1, v2 ∈ VG and non-adjacent
vertices u1, u2 ∈ VH.

It is easy to see that if we exchange the last item with a more general definition:

• a clause ⋁︁
i∈[r] ¬xvi,ui for each natural number r, each relation symbol R of arity r,

each (v1, v2, ..., vr) ∈ RG , and each (u1, u2, ..., ur) /∈ RH,

we get the set of clauses CNF (G,H) for a common CSP on any relational structure.

1.2.2 Bounded Arithmetic

Some definitions, examples, and results are adapted from [5]. In our work, we use two-
sorted first-order (sometimes called second-order) set-up as a framework for the theory.
Here there are two kinds of variables: the variables x, y, z, ... of the first sort are called
number variables and range over the natural numbers, and the variables X,Y, Z, ... of the
second sort are called set (or also string) variables and range over finite subsets of natural
numbers (which represent binary strings). Functions and predicate symbols may involve
both sorts and there are two kinds of functions: the number-valued functions (or just
number functions) and the string-valued functions (or just string functions). Quantifiers
over number variables are called number quantifiers, and quantifiers over string variables
are called string quantifiers.

The usual language of arithmetic for two-sorted first-order theories is the extension of
the standard language for Peano Arithmetic LPA.

Definition 3 (L2
PA). L2

PA = {0, 1,+, ·, | |; =1,=2,≤,∈}.

11



Here the symbols 0, 1,+, ·,=1 and ≤ are well-known and are from LPA: they are
function and predicate symbols over the first sort. The function |X| (the length of X) is
a number-valued function and is intended to denote the least upper bound of the set X
(the length of the corresponding string). The binary predicate ∈ for a number and a set
denotes set membership, and =2 is the equality predicate for sets. The defining properties
of all symbols from language L2

PA are described by a set of basic axioms denoted by
2-BASIC [5], which we do not present here.
Notation 1. We will use the abbreviation

X(t) =def t ∈ X,

where t is a number term. Thus, we think of X(i) as the ith bit of a binary string X of
length |X|.

To define the theory V 0, in which we will formalize the H-colouring problem, we need
the following definitions.
Definition 4 (Bounded formulas). Let L be a two-sorted vocabulary. If x is a number
variable and X is a string variable that do not occur in the L-number term t, then ∃x ≤ tϕ
stands for ∃x(x ≤ t ∧ ϕ), ∀x ≤ tϕ stands for ∀x(x ≤ t → ϕ), ∃X ≤ tϕ stands for
∃X(|X| ≤ t ∧ ϕ) and ∀X ≤ tϕ stands for ∀X(|X| ≤ t → ϕ). Quantifiers that occur in
this form are said to be bounded, and a bounded formula is one in which every quantifier
is bounded.
Notation 2. We will use the following abbreviations: ∃x̄ ≤ t̄ϕ stands for ∃x1 ≤ t1, ...,
∃xk ≤ tkϕ for some k, where no xi occurs in any tj (even if i < j). Similarly, for ∀x̄ ≤ t̄,
∃X̄ ≤ t̄, ∀X̄ ≤ t̄.

Definition 5 (ΣB
i and ΠB

i formulas in L2
PA). We will define ΣB

i and ΠB
i formulas recur-

sively as follows.
• ΣB

0 = ΠB
0 is the set of L2

PA-formulas whose only quantifiers are bounded number
quantifiers (there can be free string variables);

• For i ≥ 0, ΣB
i+1 (resp. ΠB

i+1) is the set of formulas of the form ∃X̄ ≤ t̄ϕ(X̄) (resp.
∀X̄ ≤ t̄ϕ(X̄)), where ϕ is a ΠB

i formula (resp. ΣB
i formula), and t̄ is a sequence of

L2
PA-terms that do not involve any variable from X̄.

Definition 6 (Comprehension Axiom). If Φ is a set of formulas, then the comprehension
axiom scheme for Φ, denoted by Φ-COMP , is the set of formulas

∃X ≤ y∀z < y(X(z)←→ ϕ(z)), (1.1)

where ϕ(z) is any formula in Φ, X does not occur free in ϕ(z), and ϕ(z) may have free
variables of both sorts, in addition to z.
Definition 7 (V 0). The theory V 0 has the vocabulary L2

PA and is axiomatized by 2-
BASIC and ΣB

0 -COMP .
There is no explicit Induction axiom scheme in V 0, but it is known [4] that V 0 ⊢

ΣB
0 -IND, where Φ-IND is Number Induction Axiom.

Definition 8 (Number Induction Axiom). If Φ is a set of two-sorted formulas, then Φ-
IND axioms are the formulas

(ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x+ 1)))→ ∀zϕ(z), (1.2)

where ϕ is a formula in Φ.

12



1.2.3 Propositional Proof Complexity

In this section we define the propositional proof systems R, R(log), and their tree-like
versions. Some definitions and results are adopted from [10],[12].

Definition 9 (Propositional proof system, [6]). A propositional proof system is a poly-
nomial time function P whose range is the set TAUT . For a tautology τ ∈ TAUT , any
string w such that P (w) = τ is called a P -proof of τ .

Proof systems are usually defined by a finite number of inference rules of a particular
form, and a proof is created by applying them step by step. The complexity of a proof is
measured by its size and number of steps.

The resolution system R operates with atoms and their negations and has no other
logical connectives. The basic object is a clause, a disjunction of a finite set of literals.
The resolution rule allows us to derive new clause C1 ∪C2 from two clauses C1 ∪ {p} and
C2 ∪ {¬p}.

C1 ∪ {p} C2 ∪ {¬p}
C1 ∪ C2

. (1.3)

If we manage to derive the empty clause ∅ from the initial set of clauses C, the clauses in
the set C are not simultaneously satisfiable. Thus, the resolution system can be interpreted
as a refutation proof system: instead of proving that a formula is a tautology, it proves that
a set of clauses C = {C1, C2, ..., Cn} is not satisfiable, and therefore formula α = ⋁︁n

i=1 ¬Ci
is a tautology.

Definition 10 (An R-proof). Let C be a set of clauses, an R-refutation of C is a sequence
of clauses D1, ..., Dk such that

• for each i ≤ k, either Di ∈ C or there are u, v < i such that Di follows from Du, Dv

by the resolution rule,

• Dk = ∅.

The number of steps in the refutation is k.

The DNF-resolution (denoted by DNF-R) is a proof system extending R by allowing
in clauses not only literals but also their conjunctions [12]. DNF-R has the following
inference rules.

C ∪ {
⋀︁
j lj} D ∪ {¬l′1, ...,¬l′t}

C ∪D
, (1.4)

if t ≥ 1 and all l′i occur among lj , and

C ∪ {
⋀︁
j≤s lj} D ∪ {

⋀︁
s<j≤t lj}

C ∪D ∪ {
⋀︁
i≤s+t li}

. (1.5)

Notice that the constant-depth Frege systems generalize the resolution and DNF-R sys-
tems, which are depth one and depth two systems, respectively.

Let f : N+ → N+ be a non-decreasing function. Define R(f)-size of a DNF-R refutation
π to be the minimum s such that

• π has at most s steps (i.e. clauses), and

• every logical term occurring in π has size at most f(s).

Thus, a size s R(log)-refutation may contain terms of size up to log(s).
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Definition 11 (Tree-like proof systems). A proof is called tree-like if every step of the
proof is a part of the hypotheses of at most one inference in the proof (each line in the
proof can be used only once as a hypothesis for an inference rule). For a proof system P
by P ∗ we denote the proof system whose proofs are exactly tree-like P -proofs, for example
R∗ and R∗(log).

Definition 12 (p-simulation). Let P and Q be two propositional proof systems. A p-time
function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a p-simulation of Q by P if and only if for all
strings ω, α

Q(ω, α)→ P (f(ω, α), α).

Lemma 2 (5.7.2 in [12]). R p-simulates R∗(log) with respect to refutations of sets of
clauses.

We also introduce Definition 13, which we will use at the end of Section 1.3.3.

Definition 13 (DNF1-formula). A basic formula is an atomic formula or the negation of
an atomic formula. A DNF1-formula is a formula that is built from basic formulas by

• first apply any number of conjunctions and bounded universal quantifiers,

• then apply any number of disjunctions and bounded existential quantifiers.

1.3 Formalization of the H-colouring problem in V 0

1.3.1 Defining Relations

In this section we define all the notions we need to formalize the decision algorithm in
the p-time case of the H-colouring problem, i.e. the notions of a graph, bipartite and
non-bipartite graphs and a homomorphism between graphs, in the vocabulary L2

PA and
using only basic axioms of V 0. To do this, we extend our theory with new predicate and
function symbols, and for each of them, we add defining axioms which ensure that they
receive their standard interpretations in a model of V 0.

Definition 14 (Representable/Definable relations). Let L ⊇ L2
PA be a two-sorted vo-

cabulary, and let ϕ be a L-formula. Then we say that ϕ(x̄, X̄) represents (or defines) a
relation R(x̄, X̄) if

R(x̄, X̄)←→ ϕ(x̄, X̄). (1.6)

If Φ is a set of L-formulas, then we say that R(x̄, X̄) is Φ-representable (or Φ-definable) if
it is represented by some ϕ ∈ Φ.

Definition 15 (Definable number functions). Let T be a theory with a two-sorted vocab-
ulary L ⊇ L2

PA, and let Φ be a set of L-formulas. A number function f is Φ-definable in
T if there is a formula ϕ(x̄, y, X̄) in Φ such that

T ⊢ ∀x̄∀X̄ ∃!y ϕ(x̄, y, X̄), (1.7)

and
y = f(x̄, X̄)←→ ϕ(x̄, y, X̄). (1.8)

The auxiliary predicate and function symbols, which we will use further to define
different notions in V 0, are the following.
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Definition 16 (Divisibility). The relation of divisibility is defined by

x|y ←→ ∃z ≤ y(x · z = y). (1.9)

Definition 17 (Pairing function). If x, y ∈ N we define the pairing function ⟨x, y⟩ as the
following term in V 0.

⟨x, y⟩ = (x+ y)(x+ y + 1) + 2y. (1.10)
Since the formula for pairing function is just a term in the standard vocabulary for the
theory V 0, it is obvious that V 0 proves the condition (1.7). It is also easy to prove in V 0

that the pairing function is a one-one function, i.e.

V 0 ⊢ ∀x1, x2, y1, y2 ⟨x1, y1⟩ = ⟨x2, y2⟩ → x1 = x2 ∧ y1 = y2. (1.11)

Using the pairing function, we can code a pair of numbers x, y by one number ⟨x, y⟩,
and the sequence of pairs by a subset of numbers. To define a graph on n vertices, consider
a string VG where |VG | = n and ∀i < n VG(i). We say that VG is the set of n vertices of
the graph G. Then we define string EG of length |EG | < 4n2 to be the set of edges of
the graph G as following: if there is an edge between vertices i, j, then, using the pairing
function, set EG(⟨i, j⟩) and ¬EG(⟨i, j⟩) otherwise.

Notation 3. Instead of EG(⟨i, j⟩) we will write just EG(i, j) to denote that there is an
edge between i and j, and sometimes instead of (VG , EG) we will write G.

Definition 18 (Undirected graph G without loops). A pair of sets G = (VG , EG) with
|VG | = n denotes an undirected graph without loops if it satisfies the following relation.

GRAPH(VG , EG)←→ ∀i < n(VG(i)) ∧ ∀i < j < n

(EG(i, j)←→ EG(j, i)) ∧ ∀i < n¬(EG(i, i)).
(1.12)

Talking about graphs, we will consider only pairs of strings G = (VG , EG) that satisfy
the above relation. Since we formalize the H-colouring problem, we need to define the
homomorphism on graphs in the vocabulary L2

PA. Consider two graphs G = (VG , EG)
and H = (VH, EH), where |VG | = n, |VH| = m. Firstly, we define a map between two sets
of vertices VG , VH, i.e. between sets [0, n − 1] and [0,m − 1]. We again use the pairing
function: consider a set Z < ⟨n − 1,m − 1⟩ + 1, where Z(⟨i, j⟩) means that ith vertex
is mapped to jth vertex. For Z to be a well-defined map, it should satisfy the following
ΣB

0 -definable relation MAP (n,m,Z).

Definition 19 (Map between two sets). We say that a set Z is a well-defined map between
two sets [0, n− 1] and [0,m− 1] if it satisfies the relation

MAP (n,m,Z)←→ ∀i < n∃j < mZ(⟨i, j⟩)∧
∀i < n∀j1, j2 < m(Z(⟨i, j1⟩) ∧ Z(⟨i, j2⟩)→ j1 = j2).

(1.13)

Now we can formalize the standard notion of the existence of a homomorphism between
two graphs G and H (here the homomorphism is formalized by a set Z with certain
properties).

Definition 20 (The existence of a homomorphism between graphs G and H). There is
a homomorphism between two graphs G = (VG , EG) and H = (VH, EH) with |VG | = n,
|VH| = m if they satisfy the relation

HOM(G,H)←→ ∃Z ≤ ⟨n− 1,m− 1⟩
(︁
MAP (n,m,Z)∧

∀i1, i2 < n,∀j1, j2 < m

(EG(i1, i2) ∧ Z(⟨i1, j1⟩) ∧ Z(⟨i2, j2⟩)→ EH(j1, j2))
)︁
.

(1.14)
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Note that the relation HOM(G,H) is a ΣB
1 -definable relation.

Finally, we need to formalize what it means to be a bipartite or a non-bipartite graph.
The notion of being bipartite is ΣB

1 -definable in L2
PA.

Definition 21 (Bipartite graph H). A graph H = (VH, EH) with |VH| = m is bipartite if
it satisfies the relation

BIP (H)←→ ∃WH, UH ≤ m
(︁
∀i < m(WH(i)↔ ¬UH(i))∧

∀i < j < m(EH(i, j)→ (WH(i) ∧ UH(j)) ∨ (WH(j) ∧ UH(i)))
)︁
.

(1.15)

To define a non-bipartite graph we use a commonly known characterization of non-
bipartite graphs (to contain an odd cycle, or, more generally, to allow a homomorphism
from an odd cycle). The reason here is to get a ΣB

1 -definable relation for a non-bipartite
graph. This makes the formula in the main statement in the next section ΠB

1 , and hence
translatable into propositional logic. First, we define a cycle.

Definition 22 (Cycle Ck). A graph Ck = (VCk
, ECk

) with VCk
= {0, 1, ..., k − 1} is a cycle

of length k if it satisfies the relation

CY CLE(Ck)←→ ECk
(0, k − 1) ∧ ∀i < (k − 1)ECk

(i, i+ 1)∧
∀i, j < (k − 1)(j ̸= i+ 1→ ¬ECk

(i, j)).
(1.16)

Definition 23 (Non-bipartite graph G). A graph G = (VG , EG) with |VG | = n is non-
bipartite if it satisfies the following ΣB

1 -definable relation

NONBIP (G)←→ ∃k ≤ n(2|(k − 1))∃VCk
= k, ∃ECk

< 4k2

CY CLE(VCk
, ECk

) ∧HOM(Ck,G).
(1.17)

1.3.2 Proving in theory V 0

Lemma 3 (Homomorphism transitivity). For all graphs G,H,S, V 0 proves the property
of a homomorphism to be transitive.

V 0 ⊢ ∀G,H,S (HOM(G,H) ∧HOM(H,S)→ HOM(G,S)). (1.18)

Proof. Consider the graphs G = (VG , EG)), H = (VH, EH) and S = (VS , ES), where
|VG | = n, |VH| = m and |VS | = t. Since HOM(G,H) and HOM(H,S), there exist two
sets Z ≤ ⟨n− 1,m− 1⟩ and Z ′ ≤ ⟨m− 1, t− 1⟩ that satisfy the homomorphism definition.
We need to prove that there exists a set Z ′′ ≤ ⟨n− 1, t− 1⟩ such that

MAP (n, t, Z ′′) ∧ ∀i1, i2 < n,∀k1, k2 < t

(EG(i1, i2) ∧ Z ′′(⟨i1, k1⟩) ∧ Z ′′(⟨i2, k2⟩)→ ES(k1, k2)).
(1.19)

Consider the set Z ′′ ≤ ⟨n− 1, t− 1⟩ which we define by the formula

Z ′′(⟨i, k⟩)←→ ∃j < m(Z(⟨i, j⟩) ∧ Z ′(⟨j, k⟩)). (1.20)

This set should exist due to Comprehension Axiom ΣB
0 -COMP since the formula ϕ(⟨i, k⟩)

= ∃j < m (Z(⟨i, j⟩) ∧ Z ′(⟨j, k⟩)) ∈ ΣB
0 . It is easy to check that the set Z ′′ satisfies the

homomorphism relation between graphs G and S.

Notation 4. K2 will denote the complete graph on two vertices.
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In the following two lemmas, we prove that there is always a homomorphism from a
bipartite graph to K2 and there is no homomorphism from a non-bipartite graph to K2.

Lemma 4. For all bipartite graphs H, V 0 proves the existence of a homomorphism from
H to K2.

V 0 ⊢ ∀H (BIP (H)→ HOM(H,K2)). (1.21)

Proof. Consider a bipartite graph H = (VH, EH) with |VH| = n. We need to show that
there exists a homomorphism from H to K2, i.e. an appropriate set Z ≤ ⟨n− 1, 2⟩. Since
H is bipartite, it follows that there exist two subsets WH and UH such that (WH(i) ↔
¬UH(i)). Consider a set Z ≤ ⟨n− 1, 2⟩ such that{︄

Z(⟨i, 0⟩)←→WH(i),
Z(⟨i, 1⟩)←→ UH(i).

This set also exists due to Comprehension Axiom ΣB
0 -COMP since formula ϕ(⟨i, j⟩) =

(j = 0 ∧WH(i)) ∨ (j = 1 ∧ UH(i)) ∈ ΣB
0 . Obviously, since (WH(i) ↔ ¬UH(i)), by the

definition of Z we have MAP (n, 2, Z). Consider any i1, i2 < n such that EH(i1, i2).
Then (WH(i1) ∧ UH(i2)) or (WH(i2) ∧ UH(i1)). In the first case we have Z(⟨i1, 0⟩) ∧
Z(⟨i2, 1⟩), in the second case Z(⟨i2, 0⟩) ∧ Z(⟨i1, 1⟩), and in both cases EK2(0, 1). Thus, Z
is a homomorphism from H to K2.

Lemma 5. For all non-bipartite graphs G, V 0 proves that there is no homomorphism from
G to K2.

V 0 ⊢ ∀G (NONBIP (G)→ ¬HOM(G,K2)). (1.22)

Proof. Suppose that a graph G = (VG , EG), |VG | = n is non-bipartite, i.e. there exist
k ≤ n, Ck = (VCk

, HCk
) with |VCk

| = k such that 2|(k− 1), CY CLE(Ck) and HOM(Ck,G).
Assume that there exists a homomorphism from G to K2. Due to Lemma 3, by transi-

tivity there is also a homomorphism Z ≤ ⟨k− 1, 2⟩ from Ck to K2. Since it is a homomor-
phism from Ck to K2, for every 0 ≤ i ≤ (k − 1) either Z(⟨i, 0⟩) or Z(⟨i, 1⟩).

Without loss of generality, suppose that Z(⟨0, 0⟩) and let us prove that Z(⟨k − 1, 0⟩).
Since 2|(k − 1), it follows that k > 2. Due to CY CLE(Ck), ECk

(0, 1) and ECk
(1, 2). We

claim that for every i < k, if 2|i, then Z(⟨i, 0⟩) and Z(⟨i, 1⟩) otherwise. Consider the
formula:

ϕ(i, Z) = (2|i→ Z(⟨i, 0⟩)) ∧ (2 ∤ i→ Z(⟨i, 1⟩)). (1.23)
Since ϕ(i, Z) ∈ ΣB

0 , we can prove this claim by induction on i, because V 0 proves ΣB
0 -

IND.
(ϕ(0, Z) ∧ ∀i < k(ϕ(i, Z)→ ϕ(i+ 1, Z))→ ∀j < k ϕ(j, Z). (1.24)

The base case is considered above. For the step of induction, suppose that it is true for
(i− 1) and consider i. We have two options. If 2|(i− 1), then by the induction hypothesis
Z(⟨i−1, 0⟩). Thus, since for (i−1) by CY CLE(Ck) we have ECk

(i−1, i), by the definition
of homomorphism Z(⟨i, 1⟩). Analogously, if 2 ∤ (i− 1), then Z(⟨i, 0⟩).

Hence Z(⟨0, 0⟩) and Z(⟨k − 1, 0⟩). But since there is an edge between the vertices 0
and (k−1) in the graph Ck, Z cannot be a homomorphism between Ck and K2. Therefore,
our assumption leads to a contradiction, and there is no homomorphism from G to K2.

The main result of this paper is an immediate conclusion from the previous lemmas.

Theorem 2 (The main universal statement). For all non-bipartite graphs G and bipartite
graphs H, V 0 proves that there is no homomorphism from G to H.

V 0 ⊢ ∀G,H(BIP (H) ∧NONBIP (G)→ ¬HOM(G,H)). (1.25)
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Proof. Suppose that there exists a homomorphism from G to H. According to Lemma 4,
since H is bipartite, there exists a homomorphism from H to K2. Thus, due to Lemma 3,
by the transitivity there exists a homomorphism from G to K2. But this is in contradiction
with Lemma 5.

1.3.3 Translating into tautologies

1.3.3.1 Translation of the main universal statement

In this section we proceed with the translation of the main universal statement in the
theory V 0 into propositional tautologies. There is a well-known translation of ΣB

0 formulas
into propositional calculus formulas: we can translate each formula ϕ(x̄, X̄) ∈ ΣB

0 into a
family of propositional formulas [5].

||ϕ(x̄, X̄)|| = {ϕ(x̄, X̄)[m̄, n̄] : m̄, n̄ ∈ N}. (1.26)

Lemma 6 ([5]). For every ΣB
0 (L2

PA) formula ϕ(x̄, X̄), there is a constant d ∈ N and a
polynomial p(m̄, n̄) such that for all m̄, n̄ ∈ N, the propositional formula ϕ(x̄, X̄)[m̄, n̄] has
depth at most d and size at most p(m̄, n̄) [5].

There is a theorem that establishes a connection between ΣB
0 -fragment of the theory

V 0 and constant-depth Frege proof system.

Theorem 3 (V 0 Translation, [5]). Suppose that ϕ(x̄, X̄) is a ΣB
0 formula such that V 0 ⊢

∀x̄∀X̄ϕ(x̄, X̄). Then the propositional family ||ϕ(x̄, X̄)|| has polynomial size bounded depth
Frege proofs. That is, there are a constant d and a polynomial p(m̄, n̄) such that for all
1 ≤ m̄, n̄ ∈ N, ϕ(x̄, X̄)[m̄, n̄] has a d-Frege proof of size at most p(m̄, n̄). Further, there is
an algorithm that finds a d-Frege proof of ϕ(x̄, X̄)[m̄, n̄] in time bounded by a polynomial
in (m̄, n̄) [5].

Consider the ΠB
1 -formula ϕ(G,H) from Theorem 2 which expresses that there is no

homomorphism from a non-bipartite graph G to a bipartite graph H.

ϕ(G,H) = ¬GRAPH(G) ∨ ¬GRAPH(H)∨
∨¬BIP (H) ∨ ¬NONBIP (G) ∨ ¬HOM(G,H).

(1.27)

For the graphs G = (VG , EG) with |VG | = n and H = (VH, EH) with |VH| = m we can
rewrite this formula as follows:

ϕ(VG , EG , VH, EH) = (1.28)
∃i < n¬VG(i) ∨ ∃i < j < n (1.29)

((¬EG(i, j) ∨ ¬EG(j, i)) ∧ (EG(i, j) ∨ EG(j, i))) ∨ ∃i < nEG(i, i) (1.30)
∨ (1.31)

∃i < m¬VH(i) ∨ ∃i < j < m (1.32)
((¬EH(i, j) ∨ ¬EH(j, i)) ∧ (EH(i, j) ∨ EH(j, i))) ∨ ∃i < nEH(i, i) (1.33)

∨ (1.34)
∀WH, UH ≤ m

(︁
∃i < m ((¬WH(i) ∨ UH(i)) ∧ (WH(i) ∨ ¬UH(i)))∨ (1.35)

∨∃i < j < m (1.36)
(EH(i, j) ∧ (¬WH(i) ∨ ¬UH(j)) ∧ (¬WH(j) ∨ ¬UH(i)))

)︁
(1.37)

∨ (1.38)
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∀k ≤ n(2|(k − 1)) ∀VCk
= k, ∀ECk

< 4k2(︁
(∃i < k¬VCk

(i)∨ (1.39)
∨∃i < j < k((¬ECk

(i, j) ∨ ¬ECk
(j, i)) ∧ (ECk

(i, j) ∨ ECk
(j, i)))∨ (1.40)

∨∃i < k ECk
(i, i)) ∨ (¬ECk

(0, k − 1) ∨ ∃i < (k − 1) (1.41)
¬ECk

(i, i+ 1) ∨ ∃i, j < (k − 1) (j ̸= i+ 1 ∧ ECk
(i, j)))∨ (1.42)

∨(∀Z ≤ ⟨k − 1, n− 1⟩ (¬MAP (k, n, Z) ∨ ∃i1, i2 < k∃j1, j2 < n (1.43)
ECk

(i1, i2) ∧ Z(⟨i1, j1⟩) ∧ Z(⟨i2, j2⟩) ∧ ¬EG(j1, j2)))
)︁

(1.44)
∨ (1.45)

∀Z ′ ≤ ⟨n− 1,m− 1⟩
(︁
¬MAP (n,m,Z ′) ∨ ∃i1, i2 < n,∃j1, j2 < m (1.46)

(EG(i1, i2) ∧ Z ′(⟨i1, j1⟩) ∧ Z ′(⟨i2, j2⟩) ∧ ¬EH(j1, j2))
)︁
. (1.47)

In strict form (with all string quantifiers occurring in front) the formula ϕ(VG , EG , VH, EH)
looks like

ϕ(VG , EG , VH, EH) = ∀WH, UH ≤ m,∀VCk
≤ n, ∀ECk

≤ 4n2,

∀Z ≤ ⟨k − 1, n− 1⟩, ∀Z ′ ≤ ⟨n− 1,m− 1⟩
[ψ(n,m, VG , VH,WH, UH, VCk

, EG , EH, ECk
, Z, Z ′)],

(1.48)

where
ψ(n,m, VG , VH,WH, UH, VCk

, EG , EH, ECk
, Z, Z ′)

is the ΣB
0 -formula. Thus, by Lemma 22 one can translate it into a family of short proposi-

tional formulas. For every free string variable X, |X| = nX in the formula ψ we introduce
propositional variables pX0 , pX1 , ..., pXn(X−1)

where pXi is intended to mean X(i). The first two
parts (1.29)-(1.30), (1.32)-(1.33) of the formula ϕ(VG , EG , VH, EH) say that G,H are not
graphs. The free number variables here are n,m, free string variables are VG , VH, EG , EH.
For graph G, (1.29)-(1.30) translates into

[︁ n−1⋁︂
i=0

(¬pVG
i )

]︁
∨

[︁ n−1⋁︂
j=0

j−1⋁︂
i=0

(¬pEG
⟨i,j⟩ ∨ ¬p

EG
⟨j,i⟩) ∧ (pEG

⟨i,j⟩ ∨ p
EG
⟨j,i⟩)

]︁
∨

[︁ n−1⋁︂
i=0

(pEG
⟨i,i⟩)

]︁
.

(1.49)

And for graph H, (1.32)-(1.33) translates into

[︁m−1⋁︂
i=0

(¬pVH
i )

]︁
∨

[︁m−1⋁︂
j=0

j−1⋁︂
i=0

(¬pEH
⟨i,j⟩ ∨ ¬p

EH
⟨j,i⟩) ∧ (pEH

⟨i,j⟩ ∨ p
EH
⟨j,i⟩)

]︁
∨

[︁m−1⋁︂
i=0

(pEH
⟨i,i⟩)

]︁
.

(1.50)

The third part (1.35)-(1.37) of the formula ϕ(VG , EG , VH, EH) is about the graph H not
being bipartite, free number variable here is m, free string variables are WH, UH, EH. The
translation of (1.35)-(1.37) is

[︁m−1⋁︂
i=0

(¬pWH
i ∨ pUH

i ) ∧ (pWH
i ∨ ¬pUH

i )
]︁
∨

[︁m−1⋁︂
j=0

j−1⋁︂
i=0

pEH
⟨i,j⟩ ∧ (¬pWH

i ∨ ¬pUH
j ) ∧ (¬pWH

j ∨ ¬pUH
i )

]︁
.

(1.51)
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The fourth part (1.39)-(1.44) of the formula ϕ(VG , EG , VH, EH) expresses that G is not a
non-bipartite graph. Free number variable here is n, free string variables are VCk

, ECk
, Z.

This complex subformula we split into parts. Firstly, the part of subformula saying that
Ck is not a graph is translated into

[︁ k−1⋁︂
i=0

(¬pVCk
i )

]︁
∨

[︁ k−1⋁︂
j=0

j−1⋁︂
i=0

(¬pECk

⟨i,j⟩ ∨ ¬p
ECk

⟨j,i⟩) ∧ (pECk

⟨i,j⟩ ∨ p
ECk

⟨j,i⟩)
]︁
∨

[︁ n−1⋁︂
i=0

(pECk

⟨i,i⟩)
]︁
.

(1.52)

Then the part saying that Ck is not a cycle translates into

[︁
¬pECk

⟨0,k−1⟩
]︁
∨

[︁ k−2⋁︂
i=0
¬pECk

⟨i,i+1⟩
]︁
∨

[︁ k−2⋁︂
i=0

k−2⋁︂
j=0, j ̸=i+1

p
ECk

⟨j,i⟩
]︁
. (1.53)

And the part saying that Z is not a map or not a homomorphism between Ck and G, is
translated into

[︁ k−1⋁︂
i=0

n−1⋀︂
j=0

(¬pZ⟨i,j⟩)
]︁
∨

[︁ k−1⋁︂
i=0

n−1⋁︂
j2=0

n−1⋁︂
j1=0, j1 ̸=j2

(pZ⟨i,j1⟩ ∧ p
Z
⟨i,j2⟩)

]︁
∨

[︁ k−1⋁︂
i1,i2=0

n−1⋁︂
j1,j2=0

(pECk

⟨i1,i2⟩ ∧ p
Z
⟨i1,j1⟩ ∧ p

Z
⟨i2,j2⟩ ∧ ¬p

EG
⟨j1,j2⟩)

]︁
.

(1.54)

Finally, to get the translation of the whole subformula, we need first to make a disjunction
of all formulas (1.52)-(1.54) and then make a conjunction on k.

n−1⋀︂
k=3, 2|(k−1)

[︄[︁ k−1⋁︂
i=0

(¬pVCk
i )

]︁
∨

[︁ k−1⋁︂
j=0

j−1⋁︂
i=0

(¬pECk

⟨i,j⟩ ∨ ¬p
ECk

⟨j,i⟩) ∧ (pECk

⟨i,j⟩ ∨ p
ECk

⟨j,i⟩)
]︁
∨

[︁ n−1⋁︂
i=0

(pECk

⟨i,i⟩)
]︁
∨

[︁
¬pECk

⟨0,k−1⟩
]︁
∨

[︁ k−2⋁︂
i=0
¬pECk

⟨i,i+1⟩
]︁
∨

[︁ k−2⋁︂
i=0

k−2⋁︂
j=0, j ̸=i+1

p
ECk

⟨j,i⟩
]︁
∨

[︁ k−1⋁︂
i=0

n−1⋀︂
j=0

(¬pZ⟨i,j⟩)
]︁
∨

[︁ k−1⋁︂
i=0

n−1⋁︂
j2=0

n−1⋁︂
j1=0, j1 ̸=j2

(pZ⟨i,j1⟩ ∧ p
Z
⟨i,j2⟩)

]︁
∨

[︁ k−1⋁︂
i1,i2=0

n−1⋁︂
j1,j2=0

(pECk

⟨i1,i2⟩ ∧ p
Z
⟨i1,j1⟩ ∧ p

Z
⟨i2,j2⟩ ∧ ¬p

EG
⟨j1,j2⟩)

]︁
.

]︄
(1.55)

And the fifth part (1.46)-(1.47) of the formula ϕ(VG , EG , VH, EH) saying that there is
no homomorphism from G to H, with free number variables n,m, free string variables
Z ′, EG , EH, is translated into

[︁ n−1⋁︂
i=0

m−1⋀︂
j=0

(¬pZ′

⟨i,j⟩)
]︁
∨

[︁ n−1⋁︂
i=0

m−1⋁︂
j2=0

m−1⋁︂
j1=0, j1 ̸=j2

(pZ′

⟨i,j1⟩ ∧ p
Z′

⟨i,j2⟩)
]︁
∨

[︁ n−1⋁︂
i1,i2=0

m−1⋁︂
j1,j2=0

(pEG
⟨i1,i2⟩ ∧ p

Z′

⟨i1,j1⟩ ∧ p
Z′

⟨i2,j2⟩ ∧ ¬p
EH
⟨j1,j2⟩)

]︁
.

(1.56)

The family of propositional formulas ||ψ(n,m, VG , VH,WH, UH, VCk
, EG , EH, ECk

, Z, Z ′)||
is therefore the disjunction of formulas (1.49)-(1.56) for all possible n, m, nVG , nVH , nWH ,
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nUH , nVCk
, nEG , nEH , nECk

, nZ , nZ′ ∈ N. By Theorem 3, this family of tautologies has a
polynomial-size bounded depth Frege proof.

We are now ready to prove our main goal: to show that the formulas ||¬HOM(G,H)||
for any non-bipartite graph G and bipartite graphH, have short propositional proofs. Note
that the propositional family ||¬HOM(G,H)|| is logically equivalent to ¬⋀︁

CNF (G,H),
which we introduced in Definition 2. The upper bound stated next is also a consequence
of the results in Section 5 of [1] that use different methods.
Theorem 4 (Upper Bound). For any non-bipartite graph G and bipartite graph H the
propositional family ||¬HOM(G,H)|| has polynomial size bounded depth Frege proofs.
Proof. By the construction above and Theorem 3 the translation of the formula (1.27) has
the p-size constant-depth Frege proof. If G and H are graphs, then the translations of the
first two disjuncts in (1.27) are propositional sentences that evaluate to 0 and thus can be
computed in the proof system.

Further, because H is bipartite, we can find its two parts WH, UH and evaluate accord-
ingly the atoms in the translation of ¬BIP (H) corresponding to WH and UH so that the
whole translation of the disjunct ¬BIP (H) becomes false. That is, as before, it is a propo-
sitional sentence that evaluates to 0. The analogous argument removes the translation of
the disjunct ¬NONBIP (G): substitute for the atoms corresponding to a homomorphism
from an odd cycle for some k values determined by an actual homomorphism from Ck into
G. This will turn the translation of the fourth disjunct ¬NONBIP (G) into a sentence
equal to 0 as well.

To summarize: after these substitutions the first four disjuncts in the translation of
the formula (1.27) become propositional sentences evaluated to 0 and thus the entire
translation of the formula (1.27) is equivalent to the translation of ¬HOM(G,H). That
is, we obtained a polynomial-size constant-depth Frege proof of ||¬HOM(G,H)||.

1.3.3.2 Other Remarks

Actually, we can slightly improve our upper bound result from Section 1.3.3.1. To reason
about graphs, we used a convenient for this purpose set-up of a two-sorted theory V 0,
including the Comprehension axiom. However, actually, we can avoid using it in both the
proofs of Lemmas 3 and 4. For example, in the proof of Lemma 3 instead of declaring the
existence of the set Z ′′(⟨i, k⟩) ←→ ∃j < m(Z(⟨i, j⟩) ∧ Z ′(⟨j, k⟩)) by the Comprehension
axiom we can derive that there always exists such j < m that Z(⟨i, j⟩) and Z ′(⟨j, k⟩) (since
MAP (n,m,Z)∧MAP (m, t, Z ′)) and therefore we just manually construct the appropriate
set Z ′′. Thus, we can switch between the theory V 0 and the weaker theory IΣ1,b

0 , which is
axiomatized by 2-BASIC and IΣ1,b

0 -IND (where IΣ1,b
0 denotes the class of L2

PA-formulas
with all number quantifiers bounded and without string quantifiers) when it is needed.
Moreover, we can further restrict the complexity of formulas in the Induction scheme
from the full class IΣ1,b

0 to its subclass Σb
1 (which allows only bounded existential number

quantifiers) since we use the Induction scheme only once for the Σb
1-formula (1.23) in the

proof of Lemma 5.
Denote by T 1

1 (α) the two-sorted theory in the vocabulary L2
PA, containing the 2-

BASIC and IND scheme for Σb
1-formulas. There is then a theorem.

Theorem 5 ([12]). Suppose that ϕ(x̄, X̄) is a ΣB
0 , DNF1-formula such that T 1

1 (α) ⊢
∀x̄∀X̄ϕ(x̄, X̄). Then the propositional family ||ϕ(x̄, X̄)|| has polynomial size R∗(log)-
proofs. That is, there is a polynomial p(m̄, n̄) such that for all 1 ≤ m̄, n̄ ∈ N, ¬ϕ(x̄, X̄)[m̄,
n̄] has an R∗(log)-refutation of size at most p(m̄, n̄). Furthermore, there is an algorithm
that finds a R∗(log)-refutation of ¬ϕ(x̄, X̄)[m̄, n̄] in time bounded by a polynomial in (m̄, n̄).
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It is obvious that we can modify little the formula ψ(...) in (1.48) to become DNF1:
to transform it to DNF we use the limited extension introduced by Tseitin, and to remove
all existential quantifiers after universal ones we use Herbrandization (i.e. Skolemization
of the negation, see Section 13.2 of [12]). Thus, the negations of the family of tautologies
expressing that there is no homomorphism from a non-bipartite graph G to a bipartite
graph H have polynomial R∗(log)-refutation in the R∗(log) system, which is essentially a
constant depth Frege system with depth 2 and narrow logical terms.

Another note is that one of our auxiliary lemmas, Lemma 5, gives us a collateral result.
The ΠB

1 -formula (1.22)

ϕ(G) = ¬NONBIP (G) ∨ ¬HOM(G,K2),

expressing that there is no homomorphism from a non-bipartite graph G to a complete
graph K2, also could be rewritten in strict form as the universal statement of the ΣB

0 -
fragment of V 0. Thus, the family of tautologies into which one can translate this universal
statement also has polynomial size R∗(log)-proofs. Essentially, the formula (1.22) means
that the sets of bipartite and non-bipartite graphs are disjoint since we can define a
bipartite graph H as

BIP (H)←→ HOM(H,K2). (1.57)

We know that resolution R p-simulates R∗(log) system (see Lemma 2). Thus, due to
the feasible interpolation Theorem 6, there is a p-time algorithm separating bipartite and
non-bipartite graphs. Of course, this is well-known, but here we obtain the algorithm as
a consequence of the existence of polynomial resolution proofs.

Theorem 6 (The feasible interpolation theorem, [12]). Assume that the set of clauses
{A1, ..., Am, B1, ..., Bl} for all i ≤ m, j ≤ l satisfies

Ai ⊆ {p1,¬p1, ..., pn,¬pn, q1,¬q1, ..., qs,¬qs};
Bj ⊆ {p1,¬p1, ..., pn,¬pn, r1,¬r1, ..., rt,¬rt},

and has a resolution refutation with k clauses. Then the implication⋀︂
i≤m

(
⋁︂
Ai)→ ¬

⋀︂
j≤l

(
⋁︂
Bj)

has an interpolating circuit I(p̄) whose size is O(kn). If the refutation is tree-like, I is a
formula. Moreover, if all atoms p̄ occur only positively in all Ai, then there is a monotone
interpolating circuit (or a formula in the tree-like case) whose size is O(kn).

1.4 Lower Bounds
In this section we consider another side of the dichotomy of the H-colouring problem,
namely, NP -complete case for non-bipartite graphs H. Since the consequence of this
section is rather an observation than an independent result, we will not define proof
systems from Theorems 7-10: the reader can find the definitions in [8], [10], [13], [11] if
desired.

A well-studied example of the H-colouring problem is the Kn-colouring problem, which
is essentially the n-colouring problem, where Kn is a complete graph on n > 2 vertices.
One of the obvious negative instances for CSP(Kn) is the graph Kn+1: it is impossible to
n-color complete graph with n + 1 vertices. The propositional formula, expressing that
there is no homomorphism from Kn+1 to Kn, is logically equivalent to the Pigeonhole
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Principle formula PHPn+1
n , because essentially trying to find a homomorphism from Kn+1

to Kn is trying to injectively map the set [0, n+ 1] to the set [0, n]. The PHPn+1
n formula

is as follows:

¬[
⋀︂
i

⋁︂
j

pij ∧
⋀︂
i

⋀︂
j ̸=j′

(¬pij ∨ ¬pij′) ∧
⋀︂
i ̸=i′

⋀︂
j

(¬pij ∨ ¬pi′j)], (1.58)

where (n + 1)n atoms pij with i ∈ [n + 1] and j ∈ [n] expressing that i is mapped to j.
For PHPn+1

n , there are a lot of known lower bounds in different weak proof systems.

Theorem 7 ([8]). There exists a constant c, c > 1, so that, for sufficiently large n, every
resolution refutation of ¬PHPn+1

n contains at least cn different clauses.

Theorem 8 (Ajtai 1988, Beame et al. 1992, [10]). Assume that F is a Frege proof system
and d is a constant, and let n > 1. Then in every depth d F -proof of the formula PHPn+1

n

at least 2n(1/6)d

different formulas must occur. In particular, each depth d F -proof of
PHPn+1

n must have size at least 2n(1/6)d

and must have at least Ω(2n(1/6)d

) proof steps.

We also can consider weak variants of the PHP principle, PHPmn , where the number
m of pigeons is larger than n+ 1 (which will be equivalent to the non-existence of homo-
morphism from Km to Kn).

Theorem 9 ([13]). For m > n PHPmn has no polynomial calculus refutation of degree
d ≤ ⌈n/2⌉.

Theorem 10 ([11]). Let c, d and a prime p be fixed, and let q be a number not divisible by
p. Then there is δ > 0 such that for all n large enough it holds: there is m ≤ n such that
in every tree-like F cd (MODp)-proof of PHPn+m

n at least exp(nδ) different formulas must
occur.

Thus, we see that even for such an elementary negative instance of NP -complete
case of the H-colouring problem, CSP(Kn), the tautology, expressing that there is no
homomorphism from Km to Kn, m ≥ n + 1, has no short proofs in many weak proof
systems.

1.5 Conclusion

We have constructed in Section 1.3.3 short proofs of propositional statements expressing
that G /∈ CSP (H) for non-bipartite graphs G and bipartite graphs H by translating
into propositional logic a suitable formalization of the algorithm for the p-time case of
the H-colouring problem. Note that while this algorithm is very simple, it is not AC0-
computable (parity is easily AC0-reducible to the question of whether or not a graph is
bipartite), while our propositional proofs operate only with clauses and are thus, in this
respect, more rudimentary than the decision algorithm is.

The conditions for the p-time case of the H-colouring problem (and the algorithm) are
so simple that one could perhaps directly construct short propositional proofs, and the use
of bounded arithmetic may seem redundant. However, we think of this work as a stepping
stone towards proving an analogous result for the full dichotomy theorem. Its known
proofs rely on universal algebra, and formalizing them in a suitable bounded arithmetic
theory ought to be accessible, while direct propositional formalization looks unlikely. For
this reason, we use bounded arithmetic here as a common framework. Moreover, this
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framework generally allows us to obtain some collateral results that help to compose a
complete picture of the problem.

In this work, we aimed to develop the language of reasoning about the CSP dichotomy
in the theory of bounded arithmetic. The eventual goal is to formalize in such a theory
the soundness of Zhuk’s algorithm from [14], and translate it into a corresponding proof
system, extending the upper bound proved here from undirected graphs to the full CSP
in some logical calculi.

An interesting issue that we left out is to prove a lower bound not just for a suitable
H (as we did in Section 1.4) but for all H that fall under the NP -complete case of the
dichotomy theorem. If CSP(H) is NP -complete, then, unless NP = coNP , no proof
system can prove in p-size all valid statements G /∈ CSP(H). In addition, if the NP -
completeness of the class can be formalized in a theory T and we have a lower bound
for the proof system corresponding to T (see [12] for this topic), then one can use it
to construct G for which the lower bound holds. This uses a well-known part of proof
complexity, but we do feel that it adds to our understanding of the proof complexity of
CSP; it is rather a transposition of known results via known techniques. For this reason,
we do not pursue this avenue of research here.
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2. Proof complexity of CSP
This chapter is formed by the paper ’Proof complexity of CSP’. The numbering of defini-
tions and statements is adjusted to make the thesis consistent.
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Abstract

The CSP (constraint satisfaction problems) is a class of problems deciding
whether there exists a homomorphism from an instance relational structure to a
target one. The CSP dichotomy is a profound result recently proved by Zhuk [19]
and Bulatov [7]. It establishes that for any fixed target structure, CSP is either
NP-complete or p-time solvable. Zhuk’s algorithm solves CSP in polynomial time
for constraint languages having a weak near-unanimity polymorphism.

For negative instances of p-time CSPs, it is reasonable to explore their proof
complexity. We show that the soundness of Zhuk’s algorithm can be proved in a
theory of bounded arithmetic, namely in the theory V 1 augmented by three special
universal algebra axioms. This implies that any propositional proof system that
simulates both Extended Resolution and a theory that proves the three axioms
admits p-size proofs of all negative instances of a fixed p-time CSP.

2.1 Introduction

An important class of NP problems are the constraint satisfaction problems (CSP). We will
give its definition in Section 2.2.2, but a universal formulation is as follows: in a constraint
satisfaction problem CSP(A) associated with a relational structure A, for any relational
structure over the same vocabulary X the question is whether X can be homomorphically
mapped into A. The problem X ↦→? A is an instance of CSP(A). A celebrated theorem
of Zhuk [19] and Bulatov [7] states that for each constraint language A, CSP(A) is either
NP-complete or p-time decidable (see [3],[11] for the history of this theorem and earlier
results and conjectures).

The statement that there is no homomorphism from X into A can be encoded by a
propositional tautology having atoms for the potential edges of a homomorphism. The
size of this tautology, to be denoted ¬HOM(X ,A), is polynomial in the sizes of X and
A. When CSP(A) is NP-complete we cannot hope to have short propositional proofs (in
any proof system) of formulas ¬HOM(X ,A) for all unsatisfiable instances X of CSP(A),
as that would imply that NP is closed under complementation. However, when CSP(A)
is p-time decidable this obstacle is removed.

Zhuk’s algorithm solves polynomial time CSPs and provides a tool for the investigation
of their proof complexity. In fact, for a satisfiable instance X of CSP(A) the algorithm
produces a homomorphism from X to A as a witness of an affirmative answer. For un-
satisfiable instances, on the contrary, one has no witness to the algorithm’s correctness

This work was partly supported by the project SVV-2020-260589, the project "Grant Schemes at
CU" (reg. no. CZ.02.2.69/0.0/0.0/19_073/0016935) and by Charles University Research Centre program
[UNCE/SCI/022].
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other than its run. Our main result is that the soundness of Zhuk’s algorithm can be
proved in a theory of bounded arithmetic, namely in the theory V 1 augmented with three
universal algebra axioms. By the soundness here we mean that all negative answers of the
algorithm are correct. Every theory of bounded arithmetic corresponds to some propo-
sitional proof system in the sense that if one proves a universal statement in the theory,
the propositional translations of this statement will have polynomial proofs in the proof
system. Short propositional proofs of the statement ¬HOM(X ,A) can be considered as
witnesses for negative instances of CSP(A).

To establish the result we uses a modified framework analogous to the framework we
explore for our previous result in [14]; there we considered a simple example of relational
structures that are undirected graphs (the Hell-Nešetřil dichotomy theorem). Atserias and
Ochremiak in [1] studied the relation between universal algebra (and CSP in particular)
and proof complexity.

The paper is organized as follows. In Section 2.2 we recall the necessary background
from universal algebra, CSP theory, proof complexity, and bounded arithmetic. In Section
2.3 we define strong subuniverses and linear algebras, and formulate Zhuk’s four cases
theorem representing one of the main ideas of the whole algorithm. The outline of Zhuk’s
algorithm is presented in Section 2.4. Section 2.5 is devoted to the soundness of Zhuk’s
algorithm and is divided into three principal parts. In Sections 2.5.1 - 2.5.3 we introduce
the framework, formalize most of the notions used in the algorithm, and define a new
theory of bounded arithmetic. In Section 2.5.4 we prove the soundness of consistency
reductions in the theory V 1. Finally, in Section 2.5.5 we consider the linear case of the
algorithm. The main theorem is formulated in Section 2.5.6 and the summary of the proof
is presented there.

2.2 Preliminaries

2.2.1 Basic notions from universal algebra

This section is based on papers [2], [3]. Some definitions and results are adopted from [8].
For our purpose, we will consider only finite objects. For any non-empty domain A and

any natural number n we call a mapping f : An ↦→ A an n-ary operation on A. An algebra
A = (A, f1, f2, ...) is a pair of a domain A and basic operations f1, f2, ... of fixed arities
on A from some signature Σ = {f1, f2, ...}. A constraint language Γ is a set of relations
on finite domains. A relational structure A = (A,R1, R2, ...) is a pair of a domain A and
relations R1, R2, ... on A from some constraint language Γ = {R1, R2, ...}.

We say that an m-ary operation f : Am → A preservers an n-ary relation R ∈ An

(or f is the polymorphism of R, or f is compatible with R, or R is invariant under f) if
f(a1̄, ..., am̄) ∈ R for all choices of a1̄, ..., am̄ ∈ R. For any constraint language Γ and any
set of operations O we will denote by Pol(Γ) the set of all operations on A preserving
each relation from Γ, and by Inv(O) the set of all relations on A invariant under each
operation from O.

A term in a signature Σ is a formal expression that uses variables and composition of
symbols from Σ. The set of all term operations of algebra A = (A,F ) is called the clone of
term operations of A, denoted by Clone(A). A well-known theorem from universal algebra
establishes the connection between algebras and relational structures.

Theorem 11 ([4]). For any algebra A there exists relation structure A such that Clone(A)
= Pol(A).
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In general, any set of operations O on A is a clone if it contains all projections and
is closed under superposition, i.e. for a k-ary operation f ∈ O and m-ary operations
g1, ..., gm ∈ O the superposition f [g1, ..., gk] is in O as well. We define Clone(O) to be the
smallest clone containing O. The dual object for relations is the so-called relational clone
– a set of relations Γ containing the binary equality relation and closed under primitive
positive definitions (relations defined by relations from Γ, conjunction, and existential
quantifiers). If we define RelClone(Γ) to be the smallest relational clone containing Γ,
then the following theorem expresses a one-to-one correspondence between relational clones
and clones.

Theorem 12 (Galois correspondence for constraint languages).
1. For any finite domain A, any constraint language Γ on A, Inv(Pol(Γ)) = RelClone(Γ).
2. For any finite domain A, any set of operations O on A, Pol(Inv(O)) = Clone(O).

For an algebra A a subset B ⊆ A is a subuniverse if it is closed under all oper-
ations of A. Given a subuniverse B we can form the subalgebra B ≤ A by restric-
tion of all the operations of A to the set B. Given an algebra A for every subset
X ⊆ A we denote by Sg(X) the minimal subalgebra of A containing X, i.e. the sub-
algebra generated by X. If we define a closure operator E(X) to be E(X) = X ∪
{f(a1, ..., an) : f is a basic operation on A, a1, ..., an ∈ X}, and Et(X) for t ≥ 0 by
E0(X) = X,Et+1(X) = E(Et(X)), then

Sg(X) = X ∪ E(X) ∪ E2(X) ∪ ...

An equivalence relation σ on A is a congruence if any term operation on A is compatible
with σ. Two trivial congruences on A are the diagonal relation ∆A = {(a, a) : a ∈ A}
and full relation ∇A = A2. A congruence is a maximal congruence if it is not contained
in any other congruence except ∇A. A congruence σ allows one to introduce a quotient,
or factor, algebra A/σ. It has as the universe the set of σ-classes and the operations
are defined using arbitrary representatives from these classes. Note that the congruence σ
forms a subalgebra of A2: applying any term operation to elements from σ coordinatewise,
due to the compatibility property, we again get an element from σ. In general, any n-ary
relation R on A invariant under all term operations is a subalgebra of An.

A nonempty class K of algebras of the same type (same signature) is called a variety
if it is closed under subalgebras S(K), homomorphic images H(K), and direct products
P (K). It is known that the smallest variety containing K is equal to HSP (K). For a
pair of terms s, t over a signature Σ, we say that a class of algebras K in the signature Σ
satisfies the identity s ≈ t if every algebra in the class does. For any set of identities Ξ of
the type Σ, define M(Ξ) to be the class of algebras K satisfying Ξ. A class K of algebras
is an equational class if there is a set of identities Ξ such that K = M(Ξ). In this case,
we say that K is defined, or axiomatized, by Ξ.

Theorem 13 (Birkhoff). K is an equational class if and only if K is a variety. In other
words, classes of algebras defined by identities are precisely those that are closed under
H,S, and P .

2.2.2 CSP basics

In this section, we will give two different definitions of the Constraint satisfaction problem
(CSP) and will formulate the CSP dichotomy conjecture. Some definitions, examples, and
results are adapted from [3], [19], and [21].
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Definition 24 (CSP over finite domains [19]). The Constraint satisfaction problem is a
problem of deciding whether there is an assignment to a set of variables that satisfies some
specified constraints. An instance of CSP problem over finite domains is defined as a triple
Θ = (X,D,C), where

• X = {x0, ..., xn−1} is a finite set of variables,

• D = {D0, ..., Dn−1} is a set of non-empty finite domains,

• C = {C0, ..., Ct−1} is a set of constraints,
where each variable xi can take on values in the non-empty domain Di, and every con-
straint Cj ∈ C is a pair (x⃗j , ρj) with x⃗j being a tuple of variables of some length mj , called
a constraint scope, and ρj being an mj-ary relation on the product of the corresponding
domains, called a constraint relation. The question is whether there exists a solution to
Θ, i.e. an assignment to every variable xi such that for each constraint Cj the image of
the constraint scope is a member of the constraint relation.

A constraint satisfaction problem associated with constraint language Γ, to be denoted
CSP(Γ), is a subclass of CSP defined by the property that any constraint relation in any
instance of CSP(Γ) must belong to Γ.

The equivalent definition of CSP can be formulated in terms of homomorphisms be-
tween relational structures.
Definition 25 (CSP [6]).

• A vocabulary is a finite set of relational symbols R1,..., Rn, each of which has a fixed
arity.

• A relational structure over the vocabulary R1,..., Rn is a tuple A = (A,RA
1 , ..., R

A
n )

such that A is a non-empty set, called the universe of A, and each RA
i is a relation

on A having the same arity as the symbol Ri.

• For X , A, being relational structures over the same vocabulary R1,..., Rn, a homo-
morphism from X to A is a mapping ϕ : X → A from the universe X to the universe
A such that for every m-ary relation RX and every tuple (x1, ..., xm) ∈ RX we have
(ϕ(x1), ..., ϕ(xm)) ∈ RA.

Let A be a relational structure over a vocabulary R1,..., Rn. In the constraint satisfaction
problem associated with A, denoted by CSP(A), the question is, given a structure X over
the same vocabulary, whether there exists a homomorphism from X to A. If the answer
is positive, then we call the instance X satisfiable and unsatisfiable otherwise. We call A
the target structure and X the instance (or input) one.

The idea of translation from the homomorphism form to the constraint form is the
following: consider the domain X of the structure X as a set of variables and every tuple
(x1, ..., xm) ∈ RX as a constraint C = (x1, ..., xm;RA). For the translation back, consider
the set of variables X as a domain of the instance structure, the set A as a domain of the
target structure, and each constraint C = (x1, ..., xm;RA) as a relation RX on X.

It was conjectured years ago by Feder and Vardi [11] and recently proved by Zhuk
[19] and Bulatov [7] that there is a dichotomy: each CSP(A) is either NP-complete or
polynomial time solvable. The dichotomy depends on the following. We call an operation
Ω on a set A the weak-near unanimity operation (WNU) if it satisfies Ω(y, x, x, ..., x) =
Ω(x, y, x, ..., x) = ... = Ω(x, x, ..., x, y) for all x, y ∈ A. Furthermore, Ω is called idem-
potent if Ω(x, ..., x) = x for every x ∈ A, and is called special if for all x, y ∈ A,
Ω(x, ..., x,Ω(x, ..., x, y)) = Ω(x, ..., x, y).
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Lemma 7 ([17]). For any idempotent WNU operation Ω on a finite set, there exists a
special WNU operation Ω′ ∈ Clone(Ω).

Theorem 14 (CSP dichotomy theorem [19]). Suppose Γ is a finite set of relations on a
set A. Then CSP(Γ) can be solved in polynomial time if there exists a WNU operation Ω
on A preserving Γ; CSP(Γ) is NP-complete otherwise.

In terms of complexity, instead of Γ it is more convenient to consider richer languages
since they considerably reduce the variety of languages to be studied. For example, if
we consider the language RelClone(Γ) that contains the binary equality relation and is
closed under pp-definitions over Γ, we do not increase the complexity of the problem since
CSP(RelClone(Γ)) is log-space reducible to CSP(Γ). Note that due to Theorem 12 all
relations pp-definable over Γ are invariant under all polymorphisms preserving Γ.

Apart from pp-definability, there are other modifications of constraint languages that
do not increase their complexity (i.e. allow log-space reduction) such as pp-interpretability,
homomorphic equivalence, and singleton expansion of a core constraint language, see [3].
The beauty of the so-called algebraic approach to CSP is that these modifications to
constraint languages represent classical algebraic constructions. Indeed, homomorphic
equivalence and singleton expansion put together ensure that the algebra corresponding
to the constraint language is idempotent. Pp-interpretations correspond to taking ho-
momorphic images, subalgebras, and products over the algebras of polymorphisms of the
constraint languages, where an algebra of polymorphisms is Pol(Γ) with elements being
polymorphisms and the operation being a superposition.

It turns out that a constraint language D pp-interpreters a constraint language E if
and only if in Pol(E) there exist operations satisfying all the identities that are satisfied by
operations in Pol(D) [2]. Since a variety of algebras is defined by its identities, the variety
of algebra corresponding to the language D contains the variety of algebra corresponding to
the language E . Thus, pp-interpretability does not change the structure or the properties
of the corresponding algebras.

Pp-constructibility combines all previous modifications.

Definition 26 (Pp-constructibility [3]). A constraint language D over a domain D pp-
constructs a constraint language E over a domain E if there is a sequence of constraint
languages D = C1, ..., Ck = E such that for each 1 ≤ i ≤ k

• Ci pp-interprets Ci+1, or

• Ci is homomorphically equivalent to Ci+1, or

• Ci is a core and Ci+1 is its singleton expansion.

The last theorem in this section is very useful since it allows one to work with at
most binary constraints, which often simplifies representation and analysis of CSP. For
the sake of clarity, we will further restrict the discussion to constraint languages with at
most binary relations. It must be stressed that all results in the paper can be extrapolated
to any other finite constraint languages (with possibly more tedious representation).

Theorem 15. For any constraint language Γ there is a constraint language Γ′ such that
all relations in Γ′ are at most binary and Γ and Γ′ pp-constructs each other.
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2.2.3 Characterization of a CSP instance

This section introduces some properties of a CSP instance that will be used in Zhuk’s
algorithm [19] and provides their interpretations in terms of constraint languages with at
most binary relations.

We say that a variable yi of a constraint Cj = (y1, ..., yk;R) is dummy if R does not
depend on its i-th variable. A relation R ⊆ D0 × ...×Dn−1 is subdirect if for every i the
projection of R onto the i-th coordinate is the whole Di. A CSP instance Θ with a domain
set D is called 1-consistent (or arc consistent) if for every constraint Ci of the instance
the corresponding relation Ri ⊆ Di1 × ...×Dik is subdirect. An arbitrary instance can be
turned into 1-consistent instance with the same set of solutions by a simple algorithm [3].

Another type of consistency is related to the notion of a path. Let Dy denote the
domain of the variable y ∈ {x1, ..., xn}. We say that the sequence y1−C1−y2− ...−yl−1−
Cl−1− yl is a path in a CSP instance if {yi, yi+1} are in the scope of Ci for every i < l (we
do not care in what order variables yi, yi+1 occur in Ci). We say that the path connects b
and c if there exists ai ∈ Dyi for every i such that a1 = b, al = c and the projection of Ci
onto {yi, yi+1} contains the tuple (ai, ai+1). We say that a CSP instance is cycle-consistent
if it is 1-consistent and for every variable y and a ∈ Dy any path starting and ending with
y connects a and a. A CSP instance is called linked if for every variable y occurring in
the scope of a constraint C and for all a, b ∈ Dy there exists a path starting and ending
with y in Θ that connects a and b.

A fragmented CSP instance can be divided into several nontrivial instances: an in-
stance is fragmented if the set of variables X can be divided into 2 disjoint sets X1 and
X2 such that each of them is non-empty, and the constraint scope of any constraint of Θ
either has variables only from X1, or only from X2. We call an instance Θ = (X,D,C)
irreducible if any instance Θ′ = (X ′, D′, C ′) such that X ′ ⊆ X, D′

x = Dx for every x ∈ X ′,
and every constraint of Θ′ is a projection of a constraint from Θ on some subset of vari-
ables from X ′ is fragmented, or linked, or its solution set is subdirect.

One of the important notions of Zhuk’s algorithm is a weaker constraint: by weak-
ening some constraints we make an instance weaker (i.e. possibly having more solu-
tions). We say that a constraint C1 = ((y1, ..., yt), ρ1) is weaker or equivalent to a
constraint C2 = ((z1, ..., zs), ρ2) if {y1, ..., yt} ⊆ {z1, ..., zs} and C2 implies C1, i.e the
solution set to Θ1 = ({z1, ..., zs}, (Dz1 , ..., Dzs), C1) contains the solution set to Θ2 =
({z1, ..., zs}, (Dz1 , ..., Dzs), C2). We say that C1 is weaker than C2 (denoted C1 ≤ C2)
if C1 is weaker or equivalent to C2, but C1 does not imply C2. There can be 2 types
of weaker constraints. We say that C1 = ((y1, ..., yt), ρ1) ≤ C2 = ((z1, ..., zs), ρ2) with
{y1, ..., yt} ⊆ {z1, ..., zs} if one of the following conditions holds:

1. The arity of relation ρ1 is less than the arity of relation ρ2 and for any tuple
(az1 , ..., azs) ∈ ρ2, (ay1 , ..., ayt) ∈ ρ1.

2. The arities of relations ρ1 and ρ2 are equal and ρ2 ⊊ ρ1.

All the above-mentioned properties have simple interpretations in terms of constraint
languages with at most binary relations. Generally, CSP is defined as having a single
common “superdomain” D for all variables. However, even though domains can be all
equal at the beginning, Zhuk’s algorithm will create different domains for individual vari-
ables. We require each Di, i ∈ {0, ..., n−1} to be pp-definable over the constraint language
Γ, i.e. CSP(Γ) is p-equivalent to CSP(Γ, D0, ..., Dn−1). Any constraint for the CSP in-
stance is either C = (xi;Di), where Di is a restriction on the domain for the variable xi,
or C = (xi, xj ;Eij). Every unary relation can be viewed as a domain and every binary
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relation - as an edge, where the order corresponds to the direction. So it is natural to
refer to these relational structures as some sort of digraphs and to the CSP problem as a
homomorphism problem between relational structures.

In our case, an input relational structure is a classical digraph X = (VX , EX ) with VX =
{x1, ..., xn}. Let us call a target relational structure a digraph with domains Ä = (VÄ, E

ij

Ä :
0 ≤ i, j < n), where VÄ = {D0, ..., Dn−1}. The problem is in finding a homomorphism
such that it sends every xi to the domain Di and every edge (xi, xj) ∈ EX to an edge
(a, b) ∈ EijÄ (relations EijÄ can differ for all i, j). We will denote the corresponding instance
by Θ = (X , Ä).

In this setting, a 1-consistent CSP instance is an instance in which for every edge
(xi, xj) from EX , for any element a ∈ Di there is an element b ∈ Dj such that (a, b) ∈ EijÄ
and vice versa. A variable xi of an edge (xi, xj) ∈ EX is dummy if for every b ∈ Dj such
that there exists a ∈ Di, EijÄ(a, b), there is an edge (a′, b) ∈ EijÄ for every a′ ∈ Di. Note
that for a 1-consistent CSP instance this means that EijÄ is a full relation.

Since we work with digraphs, by undirected path or cycle in the paper are meant
any path or cycle with edges not necessarily directed in the same direction. A path
y0 − C0 − y1 − ... − yt−1 − Ct−1 − yt is an undirected path in digraph X (where some
variables yi, yj can be the same). Consider this path as a separate digraph Pt with new
(all different) vertices s0 −C0 − s1 − ...− st−1 −Ct−1 − st, and consider a homomorphism
H from Pt to X such that for each i ≤ t, H(si) = yi. We say that path Pt connects
elements b ∈ Dy0 and c ∈ Dyt if it can be homomorphically mapped to Ä in such a way
that for each i ≤ t homomorphism H ′ : Pt → Ä sends si to some ai ∈ Dyi and H ′(s0) = b,
H ′(st) = c. An instance is linked if for any a, b ∈ Dy there exists an undirected path
that connects a and b. Cycle-consistency in these terms means that the instance is 1-
consistent and for any a ∈ Dy and any y ∈ {x0, ..., xn−1} any undirected path that is a
cycle connects a and a. In other words, an instance is cycle-consistent if any undirected
cycle in X can be homomorphically mapped onto a cycle in Ä for any element a ∈ Dy and
any y ∈ {x0, ..., xn−1} that occurs in this cycle.

x0 ∈ D0 x1 ∈ D1

x2 ∈ D2

a

b

a

c

d

b

(x0, x1) ∈ EX

(x2, x1) ∈ EX

(x2, x0) ∈ EX

Figure 2.1: Cycle-consistent, non-linked instance.

Compare as examples two CSP instances in Figure 2.1 and Figure 2.2. The input
digraph X is the same for both instances, VX = {x0, x1, x2}, EX = {(x0, x1), (x2, x1),
(x2, x0)}. The first CSP instance has three constraint relations, E01

Ä = {(a, a), (b, c)}),
E21

Ä = {(d, a), (b, c)}) and E20
Ä = {(d, a), (b, b)}. This instance is cycle-consistent since it

is 1-consistent (each constraint of the instance is subdirect) and for every variable x and
e ∈ Dx any path starting and ending with x connects e and e. But it is not linked since,
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x0 ∈ D0 x1 ∈ D1

x2 ∈ D2

a

b

a

c

d

b

(x0, x1) ∈ EX

(x2, x1) ∈ EX

(x2, x0) ∈ EX

Figure 2.2: Linked, not cycle-consistent instance.

for example, there is no path connecting a and b in D0. However, if we add one more
edge (d, c) to E21

Ä , the new instance will be linked. On the contrary, the second instance
in Figure 2.2 is linked, but not cycle-consistent.

A fragmented instance in terms of digraphs and digraphs with domains is such an
instance where X is a disconnected digraph. Finally, if an instance is not irreducible, then
there exists a subgraph X ′ (a digraph formed from subsets of vertices VX ′ ⊆ VX and edges
EX ′ ⊆ EX ) such that the resulting instance Θ = (X ′, Ä) is not fragmented, is not linked,
and its solution set is not subdirect.

Since there are two types of weaker constraints (of less arity or of richer relation of
the same arity), we can weaken the CSP instance Θ = (X , Ä) either by removing an edge
(xi, xj) ∈ EX from X (i.e. by reducing the arity of a constraint) or by adding edges to
a relation EijÄ (i.e. by making a richer relation of the same arity). The algorithm never
increases the domains.

x0 ∈ D0 x1 ∈ D1

x2 ∈ D2

a

b

e

a

c

e

d

b

(x0, x1) ∈ EX

(x2, x1) ∈ EX

(x2, x0) ∈ EX

Figure 2.3: Division into linked components.

We conclude this section with Lemma 8 to be used further for the formalization of
Zhuk’s algorithm. For an instance Θ and its variable x let Linked(Θ, x) denote the binary
relation on Dx defined as follows: (a, b) ∈ Linked(Θ, x) if there exists a path in Θ that
connects a and b.

Lemma 8 ([19]). Suppose Θ is a cycle-consistent CSP instance such that every its variable
x ∈ X actually occurs in some constraint of Θ. Then for every x ∈ X there exists a path
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in Θ connecting all pairs (a, b) ∈ Linked(Θ, x) and Linked(Θ, x) is a congruence.

For example, consider cycle-consistent non-linked instance Θ in Figure 2.3. Binary
relation Linked(Θ, x) divides each domain into two classes: D0 into {a, e} and {b}, D1
into {a, e} and {c}, and D2 into {d} and {b}.

2.2.4 The theory V 1

In this section most definitions and results are adapted from [9], [15], [16].
Second-order (or two-sorted first-order) theories of bounded arithmetic use the fol-

lowing setup. The variables are of two kinds: variables x, y,H, ... of the first kind are
called number variables and range over the natural numbers, and variables X,Y,H, ...
of the second kind are called set variables and range over finite subsets of natural num-
bers (which can be represented as binary strings). Functions and predicate symbols can
use both number and set variables, and there are number-valued functions and set-valued
functions. Also, there are two types of quantifiers: quantifiers over number variables are
called number quantifiers, and quantifiers over set variables are called string quantifiers.
The language for the second-order theory of bounded arithmetic is an extension of the
standard language for Peano Arithmetic LPA,

L2
PA = {0, 1,+, ·, | |,=1,=2,≤,∈}.

The symbols 0, 1,+, ·,=1 and ≤ are function and predicate symbols over the number
variables. The function |X| (called the length of X) is a number-valued function and it
denotes the length of the corresponding string X (i.e. the upper bound for the set X).
The binary predicate ∈ for a number and a set variables denotes set membership, and =2
is the equality predicate for sets.

Notation 5. We will use the abbreviation X(t) =def t ∈ X, where t is a number term.
We thus think of X(i) as of the i-th bit of binary string X of length |X|.

There is a set of axioms 2-BASIC [9] that defines basic properties of symbols from
L2

PA. Here we present only axioms of the second sort:

Definition 27 (2-BASIC, second-sort axioms). The set 2-BASIC for the second-sort vari-
ables contains the following axioms:

1. X(y)→ y < |X|.

2. y + 1 =1 |X| → X(y).

3. (|X| =1 |Y | ∧ ∀i < |X|(X(i)↔ X(i))) ⇐⇒ X =2 Y .

We will skip the indices =1,=2 as there is no danger of confusion.

Notation 6. Sometimes for a set A, an element x and a formula ϕ instead of ∃x <
|A|A(x) ∧ ϕ and ∀x < |A|A(x)→ ϕ we will write ∃x ∈ Aϕ and ∀x ∈ Aϕ.

Definition 28 (Bounded formulas). Let L be the two-sorted vocabulary. If x is a number
variable, X is a string variable that do not occur in an L-number term t, then ∃x ≤ tϕ
stands for ∃x(x ≤ t ∧ ϕ), ∀x ≤ tϕ stands for ∀x(x ≤ t → ϕ), ∃X ≤ tϕ stands for
∃X(|X| ≤ t ∧ ϕ) and ∀X ≤ tϕ stands for ∀X(|X| ≤ t → ϕ). Quantifiers that occur in
this form are said to be bounded, and a bounded formula is one in which every quantifier
is bounded.
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Definition 29 (Number Induction axioms). If Φ is a set of two-sorted formulas, then
Φ-IND axioms are the formulas

ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x+ 1))→ ∀zϕ(z), (2.1)

where ϕ is any formula in Φ. The formula ϕ(x) may have other free variables than x of
both sorts.

Definition 30 (Number Minimization and Maximization axioms). The number minimiza-
tion axioms (or the least number principle axioms) for a set Φ of formulas are denoted by
Φ-MIN and consist of the formulas

ϕ(y)→ ∃x ≤ y(ϕ(x) ∧ ¬∃H < xϕ(z)), (2.2)

where ϕ is a formula in Φ. Similarly, the number maximization axioms for Φ are denoted
by Φ-MAX and consist of the formulas

ϕ(0)→ ∃x ≤ y(ϕ(x) ∧ ¬∃H ≤ y(x < z ∧ ϕ(z))), (2.3)

where ϕ is a formula in Φ. In the above definitions, ϕ is permitted to have free variables
of both sorts, in addition to x.

Definition 31 (Comprehension axioms). If Φ is a set of two-sorted formulas, then Φ-
COMP is the set of all formulas

∀x∃X ≤ x ∀y < x y ∈ X ≡ ϕ(y), (2.4)

where ϕ is any formula in Φ, and X does not occur free in ϕ(y). The formula ϕ(y) may
have other free variables than y of both sorts.

Finally, we can define the theory V 1, which is the key theory for our work.

Definition 32 (The theory V 1). Σ1,b
0 = Π1,b

0 -formulas are formulas with all number quan-
tifiers bounded and with no set-sort quantifiers. Classes Σ1,b

1 and Π1,b
1 are the smallest

classes of L2
PA-formulas such that:

1. Σ1,b
0 ∪Π1,b

0 ⊆ Σ1,b
1 ∩Π1,b

1 ,

2. both Σ1,b
1 and Π1,b

1 are closed under ∨ and ∧,

3. the negation of a formula Σ1,b
1 is in Π1,b

1 and vice versa,

4. if ϕ ∈ Σ1,b
1 , then also ∃X ≤ t ϕ ∈ Σ1,b

1 ,

5. if ϕ ∈ Π1,b
1 , then also ∀X ≤ t ϕ ∈ Π1,b

1 .

The theory IΣ1,b
0 is a second-order theory and it is axiomatized by 2-BASIC and the

IND scheme for all Σ1,b
0 -formulas. The teory V 0 expands IΣ1,b

0 by having also bounded
comprehension axioms Σ1,b

0 -CA. The theory V 0 is a conservative extension of IΣ1,b
0 with

respect to Σ1,b
0 -consequences: if γ is a Σ1,b

0 -formula and V 0 proves its universal closure,
so does IΣ1,b

0 . Finally, the theory V 1 extends V 0 by accepting the IND scheme for all
Σ1,b

1 -formulas.
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2.2.5 Auxiliary functions, relations, and axioms in V 1

In this section, we will present some general auxiliary functions and relations, which help
to express the bounds of the theory V 1.

For any two sets A,B, we say that a set B is a subset of A if

subS(B,A) ⇐⇒ |A| = |B| ∧ ∀i < |B| (B(i)→ A(i)). (2.5)

We say that a set B is a proper subset of A if

PsubS(B,A) ⇐⇒ |A| = |B| ∧ ∀i < |B| (B(i)→ A(i))∧
∃j < |A|, B(j) ∧ ∃i < |A|, A(i) ∧ ¬B(i).

(2.6)

If x, y ∈ N, we define the pairing function ⟨x, y⟩ to be the following term

⟨x, y⟩ = (x+ y)(x+ y + 1)
2 + y. (2.7)

One can easily prove in V 0 that for the pairing function the following is true:

• ∀x1, x2, y1, y2 (⟨x1, y1⟩ = ⟨x2, y2⟩ → x1 = x2 ∧ y1 = y2),

• ∀z∃x, y (⟨x, y⟩ = z),

• ∀x, y (x, y ≤ ⟨x, y⟩ < (x+ y + 1)2).

We can iterate the pairing function to code triples, quadruples, and so forth for any k,
inductively setting

⟨x1, x2, ..., xk⟩ = ⟨...⟨⟨x1, x2⟩, x3⟩, ..., xk⟩, (2.8)

where

• ∀x1, x2, ..., xk x1, x2, ..., xk ≤ ⟨x1, x2, ..., xk⟩ < (x1 + x2 + ...+ xk + 1)2k .

We refer to the term ⟨x1, x2, ..., xk⟩ as the tupling function.

Notation 7. For any set H, m ≥ 2: H(x1, ..., xm) =def H(⟨x1, ..., xm⟩).

We will use the tupling function to code a function as a set. We can then express that
H is a function from sets X1, ..., Xn to a set Y by stating

∀x1 ∈ X1, ...,∀xn ∈ Xn∃!y ∈ Y H(x1, ..., xn, y).

We will abbreviate it as Z : X1, ..., Xn → Y and H(x1, ..., xn) = y. Using the pairing
function (or encoding of k-tuples), with finite sets we can also code binary (or k-ary)
relations. Finite functions can be represented by their digraphs. For example, to represent
an m×n matrix A with natural number entries we think of it as of a function from [m]×[n]
into N . The matrix is thus encoded by the set A(i, j, a), and we write Aij = a for the
corresponding entry.

We say that a set H is a well-defined map between two sets A, |A| = n and B, |B| = m
if it satisfies the relation

MAP (A,n,B,m,H) ⇐⇒ ∀i ∈ A∃j ∈ B ∧H(i) = j∧
∀i ∈ A∀j1, j2 ∈ B (H(i) = j1 ∧H(i) = j2 → j1 = j2).

(2.9)
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The counting axiom allows one to count the number of elements in a set. Given a set
X, the census function #X(n) for X is a number function defined for n ≤ |X| such that
#X(n) is the number of x < n, x ∈ X. Thus, #X(|X|) is the number of elements in X.
The following relation says that #X is the census function for X:

Census(X, #X) ⇐⇒ #X ≤ ⟨|X|, |X|⟩ ∧ #X(0) = 0 ∧ ∀x < |X|
(x ∈ X → #X(x+ 1) = #X(x) + 1 ∧ x /∈ X → #X(x+ 1) = #X(x)).

(2.10)

Lemma 9. For any set X, V 1 proves that there exists its census function.

Proof. Given any set X, consider Σ1,b
1 -induction on n ≤ |X| for the formula

ϕ(n) = ∃H ≤ ⟨n, n⟩H(0) = 0 ∧ ∀ 0 ≤ x < n

(x ∈ X → H(x+ 1) = H(x) + 1 ∧ x /∈ X → H(x+ 1) = H(x)).
(2.11)

We will now remind the reader a few well-known number-theoretic functions and re-
lations, mainly to fix the notation. They are all definable in a weak subtheory of V 1 and
the stated properties are proved in [9],[15]. The relation of divisibility can be defined by
the formula

x|y ⇐⇒ ∃z ≤ y(xz = y). (2.12)

We say that p is a prime number if it satisfies the relation

Prime(p) ⇐⇒ 1 < p ∧ ∀y < p∀z < p (yz ̸= p). (2.13)

It is easily seen that V 1 proves that any x > 0 is uniquely representable by a product of
powers of primes. The limited subtraction a −̇ b = max{0, a− b} can be defined by

c = a −̇ b←→ ((b+ c = a) ∨ (a ≤ b ∧ c = 0)), (2.14)

and the division a/b for b ̸= 0 can be defined as follows:

c = a/b←→ (bc ≤ a ∧ a < b(c+ 1)). (2.15)

Finally, the remainder of a after being divided by p can be defined by the formula

amod p = a −̇ (p · a/p). (2.16)

We say that two numbers are congruent modulo p, denoted c1 ≡ c2(mod p) if c1mod p =
c2mod p. It means that if c1 < c2, then

c1 −̇ (p · c1/p) = c2 −̇ (p · c2/p),
c2 −̇ c1 = p(c2/p −̇ c1/p),

(2.17)

i.e. the difference c2 − c1 is divisible by p. Note that it is straightforward to show in V 1

that for all x1 ≡ x2(mod p) and y1 ≡ y2(mod p),

(x1 + y1) ≡ (x2 + y2)(mod p),
(x1y1) ≡ (x2y2)(mod p).

(2.18)
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2.3 Zhuk’s four cases

One of the two main ideas of Zhuk’s algorithm is based on strong subalgebras. In this sec-
tion we will give the definitions of absorbing subuniverse, center and central subuniverse,
and polynomially complete algebra and briefly mention their main properties. Further,
we consider the notion of linear algebras as introduced in [19] and give two elementary
examples of relational structures corresponding to linear algebras. Finally, we will formu-
late Zhuk’s four-cases theorem.

2.3.1 Absorption, center and polynomial complete algebras

If B = (B,FB) is a subalgebra of A = (A,FA), then B absorbs A if there exists an n-ary
term operation f ∈ Clone(FA) such that f(a1, ..., an) ∈ B whenever the set of indices
{i : ai /∈ B} has at most one element. B binary absorbs A if there exists a binary term
operation f ∈ Clone(FA) such that f(a, b) ∈ B and f(b, a) ∈ B for any a ∈ A and b ∈ B.

If A = (A,ΩA) is a finite algebra with a special WNU operation, then C ⊆ A is a
center if there exists an algebra B = (B,ΩB) with a special WNU operation of the same
arity and a subdirect subalgebra D = (D,ΩD) of A × B such that there is no nontrivial
binary absorbing subuniverse in B and C = {a ∈ A|∀b ∈ B : (a, b) ∈ D}. Every center is
a ternary absorbing subuniverse. A weaker notion, suggested by Zhuk in [20], is a central
subuniverse. A subuniverse C of A is called central if it is an absorbing subuniverse and
for every a ∈ A\C we have (a, a) /∈ Sg({a} ×C ∪C × {a}). A central subuniverse has all
the good properties of a center and can be used in Zhuk’s algorithm instead of the center.
Both algorithms, with the center or central universe, will correctly answer whether an
instance has a solution, or not.

For any set A denote by On(A) the set of all n-ary operations on A. The clone
of all operations on A is denoted by O(A) = {On(A)|n ≥ 0}. An n-ary operation f
on algebra A = (A,FA) is called polynomial if there exist some (n + t)-ary operation
g ∈ Clone(FA) and constants a1, ..., at ∈ A such that for all x1, ..., xn ∈ A, f(x1, ..., xn) =
g(x1, ..., xn, a1, ..., am). Denote the clone generated by FA and all the constants on A (i.e.
the set of all polynomial operations on A) by Polynom(A). We call an algebra A = (A,FA)
polynomially complete (PC) if its polynomial clone is the clone of all operations on A, O(A).
In simple words, a universal algebra A is polynomially complete if every function on A with
values in A is a polynomial function. A classical result about polynomial completeness
is based on the following notion. The ternary discriminator function is the function t
defined by the identities

t(x, y, z) =
{︄
z, x = y,

x, x ̸= y.

Then Theorem 29 gives a necessary and sufficient condition of polynomial completeness.

Theorem 16 ([5]). A finite algebra is polynomially complete if and only if it has the
ternary discriminator as a polynomial operation.

2.3.2 Linear algebras: properties and examples on digraphs

Definition 33 (Linear algebra, [19]). An idempotent finite algebra A = (A,Ω), where
Ω is an m-ary idempotent special WNU operation, is called linear if it is isomorphic
to (Zp1 × ... × Zps , x1 + ... + xm) for prime (not necessarily distinct) numbers p1, ..., ps.
For every finite idempotent algebra, there exists the smallest congruence (not necessarily
proper), called the minimal linear congruence, such that the factor algebra is linear.
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To understand how linear algebras appear in Zhuk’s algorithm, and to establish some
of their properties, we consider the notion of an affine algebra. An algebra A = (A,F )
is called affine if there is an abelian group A′ = (A, 0,−,+) such that the relation R =
{(x, y, z, u) : (x + y = z + u)} is preserved by all operations of A [12]. Affine algebra is
polynomially equivalent (has the same polynomial clone) to a module. It means that each
term operation of algebra A is affine with respect to the abelian group A′, i.e. to say, for
any given n-ary operation f ∈ F there are endomorphisms α1, ..., αn of A and an element
a ∈ A such that f can be expressed identically as in [12]:

f(x1, ..., xn) =
n∑︂
i=1

αi(xi) + a.

The following lemma establishes one important property of an affine algebra in case there
is an idempotent WNU operation on A. We will provide its proof as in [18], to make some
notes further.
Lemma 10 ([18]). Suppose A′ = (A, 0,−,+) is a finite abelian group, the relation R ⊆ A4

is defined by R = {(x, y, z, u) : (x + y = z + u)}, R is preserved by an idempotent WNU
m-ary operation Ω. Then Ω(x1, ...xm) = tx1 + ...+ txm for some t ∈ N.
Proof. Define h(x) = Ω(0, 0, ..., 0, x). We will prove the equation

Ω(x1, ..., xi, 0, ..., 0) = h(x1) + ...+ h(xi)
by induction on i. For m = 1 it follows from the definition and properties of WNU. We
know that

Ω

⎛⎜⎜⎜⎝
x1 x2 ... xi xi+1 0 ... 0
0 0 ... 0 0 0 ... 0
x1 x2 ... xi 0 0 ... 0
0 0 ... 0 xi+1 0 ... 0

⎞⎟⎟⎟⎠ ∈ R
is in R, which by the inductive assumption gives

Ω(x1, ..., xi, xi+1, 0, ..., 0) = Ω(x1, ..., xi, 0, 0, ..., 0) + h(xi+1) =
= h(x1) + ...+ h(xi) + h(xi+1).

(2.19)

We thus know that Ω(x1, ..., xm) = h(x1) + ... + h(xm). Let p be the maximal order
of an element in group A′ = (A, 0,−,+). Then for any element a in A, the order of a
divides p, and in particular pa = 0. For every a ∈ A we have h(a) + h(a) + ...+ h(a)⏞ ⏟⏟ ⏞

m

=

Ω(a, a, ..., a) = a. Thus, for any element a ̸= 0, m · h(a) ̸= 0, hence m does not divide
an order of any element in A′ and therefore m and p are coprime. Hence m has the
multiplicative inverse modulo p and there is some integer t such that tm = 1, m · h(x) =
h(x)/t = x, and h(x) = tx for every x.

If we additionally assume that Ω is special (by Lemma 7), then t = 1:
Ω(x, ..., x,Ω(x, ..., x, y)) = Ω(x, ..., x, y),

tx+ ...+ tx⏞ ⏟⏟ ⏞
m−1

+tΩ(x, ..., x, y) = tx+ ...+ tx⏞ ⏟⏟ ⏞
m−1

+ty,

t(tx+ ...+ tx⏞ ⏟⏟ ⏞
m−1

+ty) = ty,

tx+ ...+ tx⏞ ⏟⏟ ⏞
m−1

+ty + tx = y + tx

x+ ty = y + tx =⇒ t = 1.

(2.20)
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Consider any finite affine algebra A. Due to the well-known Classification theorem [13]
every finite abelian group is isomorphic to a product of cyclic groups whose orders are all
prime powers. Thus A = Zp1r1×...×Zps

rs for some not necessarily distinct primes p1, ..., ps.
If p is the maximal order of an element in A′, then, by the above proof, m = 1(mod p).
Therefore, since every pi has to divide p, every pi also divides (m − 1). If there is an
idempotent WNU operation on A, then there exists the minimal linear congruence σ such
that A/σ is isomorphic to a linear algebra.

Finally, we will formulate and prove an important theorem used in Zhuk’s algorithm.

Theorem 17 (Affine subspaces [19]). Suppose that relation ρ ⊆ (Zp1)n1 × ...× (Zpk
)nk is

preserved by x1 + ...+ xm, where p1, ..., pk are distinct prime numbers dividing m− 1 and
Zpi = (Zpi , x1 + ...+ xm) for every i. Then ρ = L1 × ...× Lk, where each Li is an affine
subspace of (Zpi)ni.

Proof. We first derive a ternary operation on every Zpi .

f(x, y, z) = x− y + z (mod pi) = Ω(x, z, 0, ..., 0) + Ω(y, ..., y, 0, 0) =
= x+ z + y + ...+ y = Ω(x, z, y, ..., y).

(2.21)

Thus, f(x, y, z) preserves ρ. Now consider the relation ρ ⊆ (Zp1)n1 × ... × (Zpk
)nk and

choose any element a ∈ ρ. The set V⃗ = {v|a + v ∈ ρ} obviously contains 0. Moreover, it
is closed under +. Consider any v1, v2 ∈ V⃗ , a + v1, a + v2 ∈ ρ. Then v1 + v2 ∈ V⃗ since
f(a + v1, a, a + v2) = a + v1 + v2 ∈ ρ. Thus, V⃗ is a linear subspace and ρ is therefore an
affine subspace.

In the remainder of this section we will give two elementary examples of constraint
languages corresponding to linear algebras. We will consider classical digraphs, relational
structures with unique binary relation of being an edge. Due to Theorem 11, each relational
structure A corresponds to an algebra A such that Clone(A) = Pol(A). We can assume
that for both CSP instances there is a special WNU operation Ω of some arity m, which
is a polymorphism for all constraint relations.

x0

x1

x2

X

a b

A

Figure 2.4: Example 1.

Consider CSP(A), where A = (VA, EA) is the digraph on two vertices and EA =
{(a, b)}. An instance of CSP(A), depicted in Figure 2.4, is the digraph X = (VX , EX ),
where VX = {x0, x1, x2} and EX = {(x0, x1), (x1, x2)}. It is obvious that there is no
homomorphism from X to A. Let us define a 3-ary operation Ω on VA as follows:

Ω(a, a, a) = a, Ω(b, b, b) = b,

Ω(b, a, a) = Ω(a, b, a) = Ω(a, a, b) = b,

Ω(a, b, b) = Ω(b, a, b) = Ω(b, b, a) = a.

(2.22)
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Ω preserves EA and is clearly idempotent, WNU and special:

Ω(a, a,Ω(a, a, b)) = Ω(a, a, b) = b,

Ω(b, b,Ω(b, b, a)) = Ω(b, b, a) = a.
(2.23)

We can define an operation + on VA as (a+x) = (x+a) = x (i.e. a is zero) and (b+b) = a
(i.e. b is an inverse element to itself). Hence A = (VA,+) is a finite abelian group, namely
Z2, and the algebra (VA,Ω) is isomorphic to linear algebra (Z2, x+ y + z).

The instance has two constraints, EX (x0, x1) ⊆ Z2 × Z2 and EX (x1, x2) ⊆ Z2 × Z2.
Since EA = {(a, b)} is an affine subspace of Z2 × Z2, we can express constraints as a
conjunction of the linear equations

EX (x0, x1) ⇐⇒
{︄
x0 = a,
x1 = b.

EX (x1, x2) ⇐⇒
{︄
x1 = a,
x2 = b.

The instance can be viewed as a system of linear equations in different fields and it has
no solution.

Now consider a different example in Figure 2.5, where A = (VA, EA) is the digraph
on two vertices with EA = {(a, b), (b, a)}, and the instance digraph X = (VX , EX ) is the
same.

x0

x1

x2

X

a b

A

Figure 2.5: Example 2.

Since the constraint relation EA is still preserved by above defined Ω, (VA,Ω) is iso-
morphic to (Z2, x + y + z). But EA differs from the relation in the previous example, so
we can express constraints as the linear equations

EX (x0, x1) ⇐⇒ x0 + x1 = b;
EX (x1, x2) ⇐⇒ x1 + x2 = b.

(2.24)

This system has two solutions, S1 = {x0 = x2 = a, x1 = b} and S2 = {x0 = x2 = b, x1 =
a}, and the instance is therefore satisfiable.

2.3.3 Zhuk’s four-cases theorem

Zhuk’s algorithm is based on the following theorem:

Theorem 18 ([19]). If A is a nontrivial finite idempotent algebra with WNU operation,
then at least one of the following is true:

• A has a nontrivial binary absorbing subuniverse,
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• A has a nontrivial centrally absorbing subuniverse,

• A has a nontrivial PC quotient,

• A has a nontrivial affine quotient.

2.4 Zhuk’s algorithm
Here we will briefly sketch the leading ideas of Zhuk’s algorithm without any details. All
details necessary for the formalization will be given directly in the corresponding sections.
For more information we send the reader to the original paper [19].

In this section we will consider an arbitrary constraint language (since the algorithm
is designed for all finite languages). Before running the algorithm, it is necessary to make
a slight modification of the constraint language. Suppose we have a finite language Γ′

that is preserved by an idempotent WNU operation Ω′. By Lemma 7, Γ′ is therefore also
preserved by a special WNU operation Ω. Let k′ be the maximal arity of the relations
in Γ′ and denote by Γ the set of all relations of arity at most k′ that are preserved by Ω.
Hence all pp-definable relations of arity at most k′ are in Γ, and CSP(Γ′) is an instance of
CSP(Γ).

The common property of all parts of the algorithm is that any time when it reduces
or restricts domains, the algorithm uses recursion.

2.4.1 Outline of the general part

The key notion of the general part of Zhuk’s algorithm is reduction, which is divided into
several procedures. Consider a CSP instance of CSP(Γ), Θ = (X,D,C). In this part, the
algorithm gradually reduces different domains until it terminates in the linear case. At
every step, it either produces a reduced domain or moves to the other type of reduction,
or answers that there is no solution (if some domain is empty after one of the procedures).
After outputting any reduced domain, the algorithm runs all from the beginning for the
same instance Θ but with a smaller domain D′.

First, the algorithm reduces domains until the instance is cycle-consistent. Then it
checks irreducibility: again, if the instance is not irreducible, the algorithm can produce a
reduction to some domain. The next step is to check a weaker instance that is produced
from the instance by simultaneously replacing all constraints with all weaker constraints:
if the solution set to such an instance is not subdirect, then some domain can be reduced.

After these types of consistency, the algorithm checks whether some domains have a
nontrivial binary absorbing subuniverse or a nontrivial center. If any of them does, the
algorithm reduces the domain to the subuniverse or to the center. Then it checks whether
there is a proper congruence on any domain such that its factor algebra is polynomially
complete. If there is such a congruence, then the algorithm reduces the domain to an
equivalence class of the congruence.

By Theorems 19, 20 and 21, proved by Zhuk in [19], if the reduced instance has no
solution, then so does the initial one.

Theorem 19 ([19]). Suppose Θ is a cycle-consistent irreducible CSP instance, and B is
a nontrivial binary absorbing subuniverse of Di. Then Θ has a solution if and only if Θ
has a solution with xi ∈ B.

Theorem 20 ([19]). Suppose Θ is a cycle-consistent irreducible CSP instance, and B is a
nontrivial center of Di. Then Θ has a solution if and only if Θ has a solution with xi ∈ B.

44



Theorem 21 ([19]). Suppose Θ is a cycle-consistent irreducible CSP instance, there does
not exist a nontrivial binary absorbing subuniverse or a nontrivial center on Dj for every
j, (Di,Ω)/σi is a polynomially complete algebra, and E is an equivalence class of σi. Then
Θ has a solution if and only if Θ has a solution with xi ∈ E.

Finally, if the algorithm cannot reduce any domain of the CSP instance Θ any further,
by Theorem 18 it means that every domain Di of size greater than 1 has a nontrivial affine
quotient. Since we consider the special WNU operation Ω, for every domain Di there exists
a congruence σi such that (Di,Ω)/σi is isomorphic to (Zp1 × ... × Zpl

, x1 + ... + xm) for
some prime numbers p1, ..., pl. The algorithm then proceeds with procedures embraced in
the linear case.

2.4.2 Outline of the linear case

The linear case of Zhuk’s algorithm is adopted from [19]. Suppose that on every domain
Di there exists the proper minimal linear congruence σi such that (Di,Ω)/σi is linear, i.e.
isomorphic to (Zp1 × ...×Zpl

, x1 + ...+ xm) for some prime numbers p1, ..., pl, where m is
the arity of Ω.

Denote each Di/σi by Li and define a new CSP instance ΘL with domains L1, ..., Ln
as follows: to every constraint (xi1 , ..., xis ;R) ∈ Θ assign a constraint (x′

i1 , ..., x
′
is ;R′),

where R′ ∈ Li1 × ... × Lis and a tuple of blocks of congruences (E1, ..., Es) ∈ R′ ⇐⇒
(E1 × ...× Es) ∩R ̸= ∅. From now we will refer to the instance Θ as the initial instance,
and to ΘL as the factorized one.

Since each Li = Di/σi is isomorphic to some Zs1 × ... × Zsl
, we can define a natural

bijective mapping ψ : Zp1 × ...×Zpr → L1× ...×Ln and assign a variable zi to every Zpi .
By Theorem 37 every relation on Zp1 × ...×Zpr preserved by Ω(x1, ..., xm) = x1 + ...+xm
is an affine subspace, the instance ΘL can thus be viewed as a system of linear equations
over z1, ..., zr. Every linear equation is an equation in Zpi , and only variables ranging over
the same field Zpi may appear in one equation.

The algorithm compares two sets: the solution set to the initial instance Θ factorized
by congruences (let us denote it by SΘ/Σ) and the solution set to the factorized instance,
SΘL

. It is known that SΘ/Σ ⊆ SΘL
. We do not know SΘ/Σ, but we can efficiently calcu-

late SΘL
using Gaussian Elimination (since Gaussian Elimination is strongly polynomial

[10]). If ΘL has no solution, then so does the initial instance. If the solution has no inde-
pendent variables (i.e. there is only one solution and the dimension of the solution set is
0), the algorithm checks whether the initial instance Θ has the solution corresponding to
this solution by restricting every domain Di of Θ to the corresponding congruence blocks
and recursively calling the algorithm for these smaller domains. Otherwise, the algorithm
arbitrarily chooses independent variables y1, ..., yk of the general solution to ΘL (the di-
mension of the solution set SΘL

is k).
The set SΘL

can be defined as an affine mapping ϕ : Zq1×...×Zqk
→ L1×...×Ln. Thus,

any solution to ΘL can be obtained as ϕ(a1, ..., ak) for some (a1, ..., ak) ∈ Zq1 × ...× Zqk
.

The algorithm denotes an empty set of linear equations by Eq. The following steps
will be repeated until the algorithm either finds a solution or answers that SΘ/Σ is empty.
The idea is to add equations iteratively to the solution set SΘL

maintaining the property
SΘ/Σ ⊆ SΘL

∪Eq. Since the dimension of SΘL
is k, and at every iteration the algorithm

reduces the dimension by at least one, the process will eventually stop.
First of all, the algorithm checks whether Θ has a solution corresponding to ϕ(0, ..., 0)

by recursively calling the algorithm for smaller domains. If it does, the algorithm stops
with a solution, if it does not, it has established the property SΘ/Σ ⊊ SΘL

. Then the
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SΘL

SΘL
∪ Eq

SΘ/Σ

Figure 2.6: Solution sets.

algorithm starts to decrease the solution set SΘL
. It always starts with the initial instance

Θ, gradually makes it weaker and at every weakening checks whether the solution set to
this new weaker instance is equal to SΘL

.
To make Θ weaker, the algorithm arbitrarily chooses a constraint C and replaces it

with all weaker constraints without dummy variables simultaneously. Let us denote this
instance by Θ′. To check whether the solution set SΘ′/Σ to Θ′ factorized by congruences
is equal to SΘL

, one needs to check whether Θ′ has solutions corresponding to ϕ(a1, ..., ak)
for every (a1, ..., ak) ∈ Zq1 × ...× Zqk

(using recursion for smaller domains). Since SΘ′/Σ
and SΘL

are subuniverses of L1 × ...×Ln, it is enough to check the existence of solutions
corresponding to ϕ(0, ..., 0) and ϕ(0, ..., 1, ..., 0) for any position of 1. If the solution set
to the weaker instance Θ′ does not contain SΘL

, the algorithm proceeds with weakening
the instance Θ′ step by step until it cannot make the instance weaker without obtaining
SΘL

⊆ SΘ′/Σ (at this point the algorithm checks that whichever constraint it weakens,
every solution to ΘL will be a solution to Θ′). It means that there exists some (b1, ..., bk)
∈ Zq1 × ... × Zqk

such that Θ′ has no solution corresponding to ϕ(b1, ..., bk). However,
if we replace any constraint C ∈ Θ′ with all weaker constraints simultaneously, then we
get an instance that has a solution corresponding to ϕ(a1, .., ak) for every (a1, ..., ak) ∈
Zq1 × ...× Zqk

.
Finally, the algorithm finds the solution set SΘ′/Σ to the instance Θ′ factorized by

congruences by finding new equations additional to the set SΘL
. There are different

strategies for linked and non-linked instances Θ′. For linked instance, it is known that
SΘ′/Σ ⊊ SΘL

is of codimension 1, so we can find only one equation and add it to SΘL
. For

non-linked instance Θ′ we find all equations that describe SΘ′/Σ, and then intersect these
equations with SΘL

(see [19]). After new equations are found, the algorithm adds them
to the set Eq, solves SΘL

∪ Eq using Gaussian Elimination, and runs another iteration.
Remark 1. By Theorem 37, SΘL

⊆ (Zp1)n1×...×(Zpk
)nk is an affine subspace. The solution

set SΘ/Σ to the initial instance factorized by congruences is also an affine subspace: the
relation that describes it is a subset of SΘL

, i.e. it is also preserved by Ω. Moreover, when
we consider the solution set SΘ′/Σ to the weaker instance Θ′ factorized by congruences,
it is also an affine subspace since all weaker constraints are in Γ.

2.5 Soundness of Zhuk’s algorithm in a theory of bounded
arithmetic

To prove the soundness of Zhuk’s algorithm in some theory of bounded arithmetic, it
is sufficient to prove that after every step of the algorithm one does not lose all the
solutions to the initial instance. Consider any relational structure A with at most binary
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relations and some negative instance Θ = (X , Ä) of CSP(A), and suppose that there is a
homomorphism from X to Ä. If the elected theory of bounded arithmetic proves that after
every step of the algorithm the new modified instance has solutions only if the previous
one does, and the algorithm terminates with no solution, then the theory proves - by its
level of bounded induction - that X is unsatisfiable, and hence that ¬HOM(X , Ä) is a
tautology.

Consider computation of the algorithm on (X , Ä), W = (W1,W2, ...,Wk), where:

• W1 = (X , Ä);

• Wi+1 = (Xi+1, Äi+1) is obtained from Wi = (Xi, Äi) by one algorithmic step (Xi+1
and Äi+1 are some modifications of relational structures Xi, Äi);

• Wk has no solution.

We need to prove, for all types of algorithmic modifications, that if Wi has a solution,
then Wi+1 also has a solution. This will prove that if the algorithm terminates with no
solution, then there is no homomorphism from X to Ä. Note that it is unnecessary to prove
the opposite direction when considering soundness. Moreover, neither it is necessary to
prove that the algorithm is well-defined. The transcription of the algorithm’s computation
can include all auxiliary necessary information.

In the formalization of the algorithm we will incorporate some modifications and ad-
justments suggested by Zhuk in his later paper [20]. We also sometimes will omit some
intermediate steps and other technicalities not affecting the result. We will explicitly high-
light all points that distinguish this version of the algorithm from the original one.

In the paper we shall prove the soundness of Zhuk’s algorithm in a new theory of
bounded arithmetic, namely V 1 augmented with three universal algebra axioms, which
will be defined in the next section.

2.5.1 Defining a new theory of bounded arithmetic

In this section we will define a new theory of bounded arithmetic that will extend the
theory V 1. Before moving to this section, we recommend that the reader recall Sections
2.2.4 and 2.2.5.

2.5.1.1 Arrangements before the run of the algorithm

We will consider only relational structures that contain at most binary relations, and
algebras corresponding to them, see Theorem 15. The algorithm works for any finite
algebra having a WNU term and uses the fact that this term and all the properties of the
algebra are known in advance. From here on out we fix algebra A = (A,Ω) and suppose
that the only basic operation on A is idempotent special WNU operation Ω. Algebras
with richer signatures can be treated in a similar way, extending all conditions imposed
on Ω to other (know in advance) basic operations.

Since at the beginning Zhuk’s algorithm adds to a constraint language Γ all relations
preserved by Ω, of the arity up to the maximal arity of relations in Γ, we will consider the
finite set of all relations of arity at most 2, invariant under Ω, which we know in advance.
Let us denote this set by ΓA, and the relational structure by A = (A,ΓA). Any time when
in formulas we claim something about this set, it means that we claim this about each
relation in this set.

A new theory of bounded arithmetic will extend the theory V 1. Before we introduce
this theory, we need to define in V 1 notions from different areas of mathematics.
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2.5.1.2 Encoding relational structure

We encode the finite universe A of size l by the set A,∀i < l, A(i), and ΓA as a pair of sets
(Γ1

A,Γ2
A) where Γ1

A is the set which encodes all unary relations from ΓA, and Γ2
A encodes

binary relations,

Γ1
A(j, a) ⇐⇒ D1

j (a) and Γ2
A(i, a, b) ⇐⇒ E2

i (a, b).

Note that in the list of ΓA there are all possible subalgebras of A (i.e. all possible domains
and strong subsets), and all possible pp-definitions constructed from unary and binary
relations preserved by Ω. When consider a subset D of A, we will denote by ΓD the set of
unary and binary relations from ΓA restricted to the set D.

Among binary relations Γ2
A there are all congruences on A and on all its subalgebras.

Let us denote this set by ΣA. Since for any subalgebra D any congruence of A is also a
congruence of D, the formula

D1
j (a) ∧D1

j (b) ∧ ΣA(i, a, b)

defines a congruence on some D. The number of all possible congruences on A is bounded
by 2|A|2 .

2.5.1.3 Encoding special WNU operation and polymorphism

We can define a special WNU operation of fixed arity m on some set A in the theory V 1

in several steps. We say that a set F is an m-ary operation F : Am → A on a set A if it
satisfies the relation

OPm(F,A) ⇐⇒ ∀x0, ..., xm−1 ∈ A, ∃y ∈ A, F (x0, ..., xm−1) = y∧
∧∀y1, y2 ∈ A (F (x0, ..., xm−1) = y1 ∧ F (x0, ..., xm−1) = y2 → y1 = y2).

(2.25)

An idempotent operation F is defined straightforwardly:

IDMm(F,A) ⇐⇒ OPm(F,A) ∧ ∀a ∈ A F (a, a, ..., a) = a. (2.26)

We say that a set Ω is a WNU operation of arity m on the set A if it satisfies the relation

wNUm(Ω, A) ⇐⇒ OPm(Ω, A) ∧ ∀a, b ∈ A,∃c ∈ A,∀x0, ..., xm−1 ∈ A⋀︂
t<m

(xt = a ∧ ∀j ̸= t < m, xj = b→ Ω(x0, ..., xm−1) = c). (2.27)

A special WNU operation is defined as follows:

SwNUm(Ω, A) ⇐⇒ wNUm(Ω, A) ∧ IDMm(Ω, A)
∀a, b ∈ A, ∃c ∈ A, Ω(a, ..., a, b) = c ∧ Ω(a, ..., a, c) = c.

(2.28)

Since we work with relations of arity at most 2, we will define polymorphisms only for
relations of this arity. We say that a set F is an operation of arity m on the set A that
preserves 2-ary relation R on A if it satisfies the following relation

Polm,2(F,A,R) ⇐⇒ OPm(F,A) ∧ ∀a0
1, ..., a

m−1
1 , a0

2, ..., a
m−1
2 ∈ A,

∀b1, b2 ∈ A, R(a0
1, a

0
2) ∧ ... ∧R(am−1

1 , am−1
2 )∧

∧F (a0
1, ..., a

m−1
1 ) = b1 ∧ F (a0

2, ..., a
m−1
2 ) = b2 → R(b1, b2).

(2.29)

48



Finally, operation F preserves 1-ary relation R on A if

Polm,1(F,A,R) ⇐⇒ OPm(F,A) ∧ ∀a0, a1, ..., am−1 ∈ A,
∀b ∈ A R(a0) ∧ ... ∧R(am−1)∧
∧F (a0, ..., am−1) = b→ R(b).

(2.30)

We will omit the second index i in Polm,i when we refer to the whole set of relations ΓA.

2.5.1.4 Encoding notions from universal algebra

A finite algebra with special WNU operation of size l is a pair of sets A = (A,Ω), where
|A| = l, A(i) for every i, and Ω is a ((m+1)l)2m+1 set representing a special WNU operation
on A. We will call this pair a Taylor algebra and denote it by TA(A,Ω). From here on
out under algebra we mean Taylor algebra. We say that B = (B,Ω) is a subalgebra of
algebra A if

subTA(B,A) ⇐⇒ |B| = |A| ∧ ∀i < l, B(i)→ A(i) ∧ SwNU(Ω, B). (2.31)

Note that condition SwNU(Ω, B) ensures that B is closed under operation Ω. The differ-
ence between fixed algebra A and all its subalgebras and factor algebras is that the size of
all these objects is bounded by l, but since it is not necessary that for all i < l, B(i), we
will measure their size by census function, #B(l). We say that a pair of sets B = (B,Ω) is
a direct product of k algebras A0 = (A0,Ω0), ...,Ak−1 = (Ak−1,Ωk−1) of the same type if

DPm,k(B,Ω, A0,Ω0, ..., Ak−1,Ωk−1) ⇐⇒ ∀a0 ∈ A0, ..., ak−1 ∈ Ak−1,

B(a0, ..., ak−1) ∧ ∀a1
0, a

2
0, ..., a

m
0 ∈ A0, ..., a

1
k−1, a

2
k−1, ..., a

m
k−1 ∈ Ak−1

Ω(a1
0, a

2
0, ..., a

m
0 , ..., a

1
k−1, a

2
k−1, ..., a

m
k−1) =

= (Ω0(a1
0, a

2
0, ..., a

m
0 ), ...,Ωk−1(a1

k−1, a
2
k−1, ..., a

m
k−1)).

(2.32)

We will denote (B,Ω) by (A0×...×Ak−1,Ω). A subdirect k-ary relation R on A0×...×Ak−1
is encoded as follows:

subDRk(R,A0, ..., Ak−1) ⇐⇒
⋀︂
i<k

∀ai ∈ Ai,∃a0 ∈ A0, ..., ai−1 ∈ Ai−1,

ai+1 ∈ Ai+1, ..., ak−1 ∈ Ak−1, R(a0, ..., ai−1, ai, ai+1, ..., ak−1.)
(2.33)

We say that a set σ < l2 is a congruence relation on the algebra A = (A,Ω) if it satisfies
the following relation

Congm(A,Ω, σ) ⇐⇒ Polm,2(Ω, A, σ)∧
∀a ∈ A, σ(a, a) ∧ ∀a, b ∈ A, (σ(a, b)↔ σ(b, a))∧

(∀a, b, c ∈ A, σ(a, b) ∧ σ(b, c)→ σ(a, c)).
(2.34)

Condition Polm,2(Ω, A, σ) ensures that σ is from Inv(Pol(ΓA)). Recall that all congru-
ences on A are listed in ΣA. If we additionally require that

(∃x, y ∈ A¬σ(x, y)) ∧ (∃x ̸= y ∈ A σ(x, y)), (2.35)

the congruence σ will be proper. A maximal congruence (a congruence over which there
is no other congruences except the full binary relation ∇) can be defined as follows:

maxCongm(A,Ω, σ) ⇐⇒ Congm(A,Ω, σ) ∧ ∃a, b ∈ A, ¬σ(a, b)∧
∧[∀σ′ < ⟨l, l⟩, (Congm(A,Ω, σ′) ∧ ∃a, b ∈ A, ¬σ′(a, b))→

→ ∃a, b ∈ A, σ(a, b) ∧ ¬σ′(a, b)].
(2.36)
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Note that this is a Π1,b
1 -formula. A factor set is the set of all equivalence classes under

the congruence σ and it will be denoted by A/σ. We can represent each block of σ by its
minimal element (it exists by the Minimal principle). Therefore, we think of the factorized
object A/σ as of a set of numbers as well:

FSm(A/σ,A,Ω, σ) ⇐⇒ Congm(A,Ω, σ)∧
∀a, b ∈ A, (σ(a, b) ∧ (a < b)→ ¬A/σ(b))

∧(∀a ∈ A(∀a′ ∈ A, σ(a, a′)→ a ≤ a′)→ A/σ(a)).
(2.37)

We say that a is a represent of the class a/σ (where a/σ is just a notation, it is any element
of A) if

Repm(a, a/σ,A/σ,A,Ω, σ) ⇐⇒ FSm(A/σ,A,Ω, σ)∧
σ(a, a/σ) ∧A/σ(a).

(2.38)

Finally, we can define the factor algebra A/σ = (A/σ,Ω/σ):

FAm(A/σ,Ω/σ,A,Ω, σ) ⇐⇒ FSm(A/σ,A,Ω, σ)∧
∧

(︁
∀a1, ..., am, c ∈ A,∀a1/σ, ..., am/σ, c/σ ∈ A,

Ω(a1/σ, ..., am/σ) = c/σ ∧Repm(c, c/σ,A/σ,A,Ω, σ)∧
∧

⋀︂
i<m

Repm(ai, ai/σ,A/σ,A,Ω, σ)→ Ω/σ(a1, ..., am) = c
)︁
.

(2.39)

Thus, we define the operation Ω/σ on minimal elements of the congruence classes.

2.5.1.5 Encoding digraphs and CSP properties

We will code a CSP instance on relational structures with at most binary relations in the
following way.

Definition 34. A directed input graph is a pair X = (VX , EX ) with VX (i) for all i <
VX = n and EX (i, j) being a binary relation on VX (there is an edge from i to j). A target
digraph with domains is an (n+ 2)-tuple of sets Ä = (VÄ, EÄ, D0, ..., Dn−1), where

• VÄ < ⟨n, l⟩ is the set corresponding to the superdomain,

• ∀i < n, Di < l is the subset of length l corresponding to the domain of variable xi,

• VÄ(i, a) ⇐⇒ Di(a),

• EÄ < ⟨⟨n, l⟩, ⟨n, l⟩⟩ is the set encoding relations EijÄ(a, b) (there is an edge (a, b)
between Di and Dj):

EÄ(u, v)→ ∃i, j < n ∃a, b < l u = ⟨i, a⟩ ∧ v = ⟨j, b⟩∧
Di(a) ∧Dj(b).

(2.40)

Sometimes we will use the notation EijÄ(a, b) instead of EÄ(⟨i, a⟩, ⟨j, b⟩) for brevity sake.
We will denote a pair of sets Θ = (X , Ä), satisfying all above conditions, by DG(Θ), and
will call Θ an instance. This representation will allow us to construct a homomorphism
from X to Ä with respect to different relations EijÄ and different domains for all vertices
x1, ..., xn.
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Definition 35 (Homomorphism from digraph X to digraph with domains Ä). A map H
is a homomorphism between input digraph X = (VX , EX ), VX = n and target digraph with
domains Ä = (VÄ, EÄ, D0, ..., Dn−1), VA < ⟨n, l⟩ if H is a homomorphism from X to Ä
sending each i ∈ VX to domain Di in VÄ. The statement that there exists such an H can
be expressed by the Σ1,b

1 -formula

HOM¨ (X , Ä) ⇐⇒ ∃H < ⟨n, ⟨n, l⟩⟩
(︁
MAP (VX , n, VÄ, ⟨n, l⟩, H)∧

(∀i < n, s < ⟨n, l⟩ H(i) = s→ ∃a < l, s = ⟨i, a⟩ ∧Di(a))∧
∀i1, i2 < n,∀j1, j2 < ⟨n, l⟩

(EX (i1, i2) ∧H(i1) = j1 ∧H(i2) = j2 → EÄ(j1, j2)).

(2.41)

Besides a homomorphism between two digraphs of different types, we will also need
a classical homomorphism between digraphs of the same type. The existence of such a
homomorphism between digraphs G and H with VG < n, VG < m can be expressed by the
following Σ1,b

1 -formula

HOM(G,H) ⇐⇒ ∃H < ⟨n,m⟩
(︁
MAP (VG , n, VH,m,H)∧

∀i1, i2 < n,∀j1, j2 < m

(EG(i1, i2) ∧H(i1) = j1 ∧H(i2) = j2 → EH(j1, j2))
)︁
.

(2.42)

Notation 8. Sometimes we will write ∃H < ⟨n,m⟩, HOM(G,H, H) and ∃H < ⟨n, ⟨n, l⟩⟩,
HOM¨ (X , Ä, H) to omit repetitions.

For an instance Θ = (X , Ä) we call an instance Θ′ = (X ′, Ä) a subinstance of Θ if

subInst(X ′,X ) ⇐⇒ subS(VX ′ , VX ) ∧ subS(EX ′ , EX )∧
(EX ′(x1, x2)→ x1, x2 ∈ VX ′).

(2.43)

That is, the target digraph with domains Ä does not change, the set of vertices VX ′ is a
subset of VX , and the set of constraints EX ′ is a subset of EX defined only on VX ′ .

We need to encode three properties of a CSP instance: cycle-consistency, being a
linked instance, and irreducibility. In order to certify the quantification complexity of the
formulas, we will introduce them explicitly. Recall that we refer to any path or cycle with
the edges not necessarily directed in the same direction as an undirected path or cycle.
We say that a digraph Ct = (VCt , ECt) with VCt = {0, 1, ..., t− 1} is an undirected cycle of
length t if it satisfies the following Σ1,b

0 -definable relation

CY CLE(Ct) ⇐⇒ (ECt(0, t− 1) ∨ ECt(t− 1, 0))∧
∀i < (t− 1) (ECt(i, i+ 1) ∨ ECt(i+ 1, i))∧

∀i, j < (t− 1)(j ̸= i+ 1→ (¬ECt(i, j) ∧ ¬ECt(j, i)).
(2.44)

We will define cycle-consistency through two homomorphisms.

Definition 36 (Cycle-consistent instance). An instance Θ = (X , Ä) with VX = n, VÄ <

⟨n, l⟩ is 1-consistent if it satisfies the following Σ1,b
0 -definable relation

1C(X , Ä) ⇐⇒ ∀i < n,∀a ∈ Di,∀j < n,

(EX (i, j)→ ∃b ∈ Dj , E
ij
A(a, b)) ∧ (EX (j, i)→ ∃b ∈ Dj , E

ji
A(b, a)).

(2.45)

The instance Θ = (X , Ä) is cycle-consistent if it is 1-consistent and any undirected cycle
Ct that can be homomorphically mapped into X with H(0) = xk can be homomorphically
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mapped into Ä for any a ∈ Dk. Cycle-consistency is expressed by the following Π1,b
2 -

formula
CCInst(X , Ä) ⇐⇒ 1C(X , Ä) ∧ ∀k < n, ∀a ∈ Dk,∀t < n,∀VCt = t,

∀ECt ≤ 4t2, ∀H < ⟨t, n⟩,
[︁
CY CLE(VCt , ECt) ∧HOM(Ct,X , H) ∧H(0, k)

→ ∃H ′ < ⟨t, ⟨t, l⟩⟩, HOM¨ (Ct, Ä, H ′)∧
∧∀i < n, j < t (H(j) = i→ ∃b ∈ Di, H

′(j) = ⟨i, b⟩) ∧H ′(0) = ⟨k, a⟩
]︁
.

(2.46)

Note that for any cycle-consistent instance Θ = (X , Ä), any its subinstance Θ′ =
(X ′, Ä) is also cycle-consistent. For any i, j ∈ X ′ the constraint relations Di, Dj , EijÄ
remain the same. We have just removed some vertices from X and have removed some
edges from EX . This does not affect the cycle-consistency property: for any i ∈ X ′, any
a ∈ Di, any existing in Θ′ path starting and ending in i must connect a and a.

We say that a digraph Pt = (VPt , EPt) with VPt = {0, 1, ..., t} is an undirected path of
length t if it satisfies the Σ1,b

0 -definable relation

PATH(Pt)←→ ∀i < t (EPt(i, i+ 1) ∨ EPt(i+ 1, i))∧
∀i < t, j ≤ t(j ̸= i+ 1→ (¬ECt(i, j) ∧ ¬ECt(j, i)).

(2.47)

For any two paths Pt and Pm of length t and m we will define the following notions.
The reverse path P−1

t is defined as:

VPt = VP−1
t

= (t+ 1) ∧ ∀i < t,

EP−1
t

(i, i+ 1)↔ EPt(t− i, t− (i+ 1)) ∧ EP−1
t

(i+ 1, i)↔ EPt(t− (i+ 1), t− i).
(2.48)

The glued path Pt ◦ Pm is defined as:

VPt◦Pm = (t+m+ 1)∧
∧∀i < t, EPt◦Pm(i, i+ 1)↔ EPt(i, i+ 1) ∧ EPt◦Pm(i+ 1, i)↔ EPt(i+ 1, i)∧

∧∀t ≤ j < (t+m),
EPt◦Pm(j, j + 1)↔ EPm(j − t, j + 1− t))∧
∧EPt◦Pm(j + 1, j)↔ EPm(j + 1− t, j − t)).

(2.49)

We say that there is a path from i to j in the input digraph X if there exists a path
Pt of some length t that can be homomorphically mapped to X such that H(0) = i and
H(t) = j:

Path(i, j,X ) ⇐⇒ ∃t < n,∃VPt = t,∃EPt ≤ 4t2, PATH(VPt , EPt)∧
∧∃H ≤ ⟨t, n⟩, HOM(Pt,X , H) ∧ (H(0, i) ∧H(t, j)).

(2.50)

We say that the path Pt connects i and j. Also, we can encode what it means to be
linked for two elements a ∈ Di, b ∈ Dj . In words, there must exist a path Pt of some
length t connecting i, j with homomorphism H such that there exists a homomorphism
H ′ from Pt to Ä sending 0 to ⟨i, a⟩ and t to ⟨j, b⟩, and for every element p < t, H(p) = k

implies that H(p) = ⟨k, c⟩ for some c ∈ Dk. We can express it by the Σ1,b
1 -formula

Linked(a, b, i, j,Θ) ⇐⇒ ∃t < nl, ∃VPt = t,∃EPt ≤ 4t2,
∃H ≤ ⟨t, n⟩, PATH(VPt , EPt) ∧HOM(Pt,X , H) ∧ (H(0, i) ∧H(t, j))∧

∧∃H ′ ≤ ⟨t, ⟨t, l⟩⟩, HOM¨ (Pt, Ä, H ′)∧
∧(∀k < n, p < t, (H(p, k)→ ∃c ∈ Dk, H

′(p) = ⟨k, c⟩))
∧H ′(0) = ⟨i, a⟩ ∧H ′(t) = ⟨j, b⟩.

(2.51)
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Notation 9. Sometimes we will write ∃Pt < ⟨n, 4n2⟩, Path(i, j,X ,Pt) and ∃Pt < ⟨nl,
4(nl)2⟩, Linked(a, b, i, j,Θ,Pt) to omit repetitions.
Definition 37 (Linked instance). We say that an instance Θ = (X , Ä) with VX = n,
VÄ < ⟨n, l⟩ is linked if it satisfies the following Σ1,b

1 -relation

LinkedInst(X , Ä) ⇐⇒ ∀i < n,∀a, b ∈ Di, Linked(a, b, i, i,Θ). (2.52)

To define irreducibility we need to encode a fragmented instance and a subdirect so-
lution set.
Definition 38 (Fragmented instance). A fragmented instance is an instance whose input
digraph X is not connected. For an instance Θ = (X , Ä) with VX = n we define this by
the following Σ1,b

1 -definable relation, where PSS encodes a proper subset.

FragmInst(X , Ä) ⇐⇒ ∃V 1
X ,∃V 2

X , V
1

X = V 2
X = n∧

∧PsubS(V 1
X , VX ) ∧ PsubS(V 2

X , VX ) ∧ (∀i < n, V 1
X (i)↔ ¬V 2

X (i))∧
∧∀i ∈ V 1

X ,∀j ∈ V 2
X , ¬EX (i, j) ∧ ¬EX (j, i).

(2.53)

We say that the instance Θ = (X , Ä) has a subdirect solution set if there is a solution
to the instance for all a ∈ Di, i ∈ {0, ..., n− 1}. It can be expressed by the Σ1,b

1 -formula

subDSSInst(X , Ä) ⇐⇒ ∀i < n∀a ∈ Di, ∃H ′ < ⟨n, ⟨n, l⟩⟩
HOM¨ (X , Ä, H) ∧H(i) = ⟨i, a⟩.

(2.54)

Now we are ready to define irreducibility.
Definition 39 (Irreducible instance). We say that an instance Θ = (X , Ä) with VX = n,
VÄ < ⟨n, l⟩ is irreducible if any its subinstance is fragmented, or linked, or its solution set
is subdirect. To express it we use the Π1,b

2 -formula

IRDInst(X , Ä) ⇐⇒ ∀X ′ = (VX ′ , EX ′), ∀VX ′ = n, ∀EX ′ < 4n2,(︁
subInst(X ′,X )→

→ FragmInst(X ′, Ä) ∨ LinkedInst(X ′, Ä) ∨ subDSSInst(X ′, Ä)
)︁
.

(2.55)

Finally, we will introduce the relation indicating that Θ = (X , Ä) is an instance of
CSP(ΓA) for the relational structure A = (A,ΓA). Since ΓA contains at most binary
relations and is closed under pp-definition, we indeed can identify all constraints posed
on variables xi, xj with two unary relations (domains Di, Dj) and one binary relation EijÄ
from the list.
Definition 40. A pair of sets Θ = (X , Ä) is a CSP instance over constraint language ΓA
on A of size l if the following Σ1,b

0 -relation is true.

Inst(Θ,ΓA) ⇐⇒ DG(Θ) ∧ ∀i < n, |Di| = l∧
∧∀i, j < n, a, b < l,∃s < |ΓA|, EÄ(⟨i, a⟩, ⟨j, b⟩)↔ Γ2

A(s, a, b)∧
∧∀i < n, a < l, ∃s < |ΓA|, Di(a)↔ Γ1

A(s, a).
(2.56)

2.5.2 Universal algebra axiom schemes

In this section we will encode absorbing and central subuniverses and polynomially com-
plete algebras in V 1, and formulate three universal algebra axioms reflecting the ’only if’
implications of Theorems 19, 20 and 21 (for the soundness we do not need the ’if’ im-
plication). For this section we will consider CSP instances alongside the corresponding
algebras and suppose that any algebra is finite and has a special WNU term.
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2.5.2.1 Binary absorption axiom scheme

Consider any algebra A = (A,Ω) and its subalgebra B = (B,Ω), where Ω is m-ary basic
operation. Suppose that the corresponding relational structure to A is A = (A,ΓA), where
ΓA is at most binary part of a relational clone. Due to Galois correspondence, Clone(Ω) =
Pol(ΓA). Thus, for any binary term operation T over A the condition T ∈ Clone(Ω) can
be encoded as:

T ∈ Clone(Ω) ⇐⇒ Pol2(T,A,ΓA). (2.57)

For any three sets A,B, T the following Σ1,b
0 -definable relation indicates that the subset

B absorbs A with binary operation T :

BAsubS(B,A, T ) ⇐⇒ subS(B,A) ∧ ∀a ∈ A, ∀b ∈ B, ∃c1, c2 ∈ B,
T (a, b) = c1 ∧ T (b, a) = c2.

(2.58)

We will formalize the ’only if’ implication of Theorem 19 in the theory V 1 as Binary ab-
sorption axioms, BA-axioms. For any algebra A = (A,Ω) corresponding to the constraint
language ΓA of a CSP instance, it is enough to consider only finitely many axioms since
there are finitely many subalgebras D of A and finitely many strong subsets B of D).

Definition 41 (BAA-axioms). For any constraint language ΓA over set A of size l, fixed
algebra A = (A,Ω) with Ω being an m-ary special WNU operation, and finitely many
subuniverses D of A and binary absorbing subuniverses B of D the binary absorption
axiom scheme is denoted by BAA-axioms and consists of the finitely many formulas of the
following form

BAA,B,D =def ∀X = (VX , EX ),∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
PsubS(B,D) ∧ SwNUm(Ω, D) ∧ SwNUm(Ω, B)∧
∧∃T < (3l)23

, Pol2(T,D,ΓA) ∧BAsubS(B,D, T )∧
∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧

∃i < n,Di = D∧
HOM¨ (X , Ä)

)︁
→ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., B, ..., Dn−1)).

(2.59)

Variables here are an input digraph X with VX = n and a target digraph with domains
Ä, Θ stands for (X , Ä). The second line of the formula ensures that B is a proper subset
of D and both B and D are closed under Ω (relation SwNUm), i.e. both are subuniverses.
The third line claims that there exists a binary operation T defined on the subuniverse
D and compatible with all relations from ΓA such that B absorbs D with T . The fourth
line says that Θ is a CSP instance over constraint language ΓA, and this instance is cycle-
consistent and irreducible. Finally, the rest of the formula says that if D coincides with
a domain Di for some variable i, all the above-mentioned conditions hold and there is a
solution to the instance Θ, then there is a solution to the instance Θ with Di restricted to
B.

In strict form (with all string quantifiers occurring in front) and after regrouping them
in such a way that all universal quantifiers will precede existential ones, we will eventually
get the universal closure of Σ1,b

2 -formula.

2.5.2.2 Central subuniverse axiom scheme

We will formalize the ’only if’ implication of Theorem 20 not for a center, but for a central
subuniverse. Recall that a central subuniverse has all the good properties of a center, and
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we will use it in the algorithm instead of the latter. To define a central subuniverse C of
an algebra A = (A,Ω) we need to encode a set Sg for the subset X = {{a} ×C,C × {a}}
of A2 for any a ∈ A. Recall that Sg(X) can be constructed by the closure operator

E(X) = X ∪ {Ω(a1, ..., am) : a1, ..., am ∈ X}
∀t ≥ 0, E0(X) = X,Et+1(X) = E(Et(X)).

(2.60)

Since A is finite of size l and |X| = 2|C|, we do not need more than (l2−2|C|) applications
of the closure operator E since at every application we either add to the set at least one
element or after some t, Et(X) = Et+r(X) for any r. Not to depend on C, let us choose
the value l2. Thus, for any set X ≤ ⟨l, l⟩, we will iteratively define the following set El2X
up to l2

∀b, c < l, E0
X(b, c) ⇐⇒ X(b, c)∧

∧∀0 < t < l2, ∀b, c < l, EtX(b, c) ⇐⇒ Et−1
X (b, c)∨

∨∃b1, ..., bm, c1, ..., cm ∈ A,Et−1
X (b1, c1) ∧ ... ∧ Et−1

X (bm, cm)∧
∧Ω(b1, ..., bm) = b ∧ Ω(c1, ..., cm) = c.

(2.61)

The existence of this set follows from Σ1,b
1 -induction. A central subuniverse must be

an absorbing subuniverse, namely a ternary absorbing subuniverse [20]. For any three sets
A,C, S the following Π1,b

1 -definable relation expresses that the subset C of A is central
under ternary term operation S.

CRsubS(C,A, S) ⇐⇒ subS(C,A) ∧ ∀c1, c2 ∈ C,∀a ∈ A, ∃c′
1, c

′
2, c

′
3 ∈ C,

S(c1, c2, a) = c′
1 ∧ S(c1, a, c2) = c′

2 ∧ S(a, c1, c2) = c′
3∧

∧∀a ∈ A\C,∀X < ⟨l, l⟩, ((X(a, c) ∧X(c, a)↔ c ∈ C)→ ¬El2X(a, a)).
(2.62)

Definition 42 (CRA-axioms). For any constraint language ΓA over set A of size l, fixed
algebra A = (A,Ω), with Ω being an m-ary special WNU operation, and finitely many
subuniverses D of A and central subuniverses C of D we denote the central subuniverse
axiom scheme by CRA-axioms. The scheme embraces the finitely many formulas of the
following form

CRA,D,C =def ∀X = (VX , EX ),∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
PsubS(C,D) ∧ SwNUm(Ω, D) ∧ SwNUm(Ω, C)∧
∃S < (4l)24

, Pol3(S,D,ΓA) ∧ CRsubS(C,D, S)∧
∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧

∃i < n,Di = D∧
HOM¨ (X , Ä)

)︁
→ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., C, ...,Dn−1)).

(2.63)

The formula is analogous to BAA-axioms, it is again the universal closure of Σ1,b
2 -

formula and the only line that differs is the third one: it claims that there exists a ternary
term operation S defined on subuniverse D and compatible with all relations from ΓA
such that C is a central subuniverse under S.

2.5.2.3 Polynomially complete axiom scheme

Theorem 29 claims that a finite algebra is polynomially complete if and only if it has the
ternary discriminator as a polynomial operation. Consider an algebra A = (A,Ω). The
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clone of all polynomials over A, Polynom(A) is defined as the clone generated by Ω and
all constants on A, i.e. nullary operations:

Polynom(A) = Clone(Ω, a1, ..., a|A|). (2.64)

Constants as nullary operations with constant values, composed with 0-many n-ary oper-
ations are n-ary operations with constant values. Thus, to be preserved by all constants
operations, any unary relation has to contain the whole set A, and any binary relation has
to contain the diagonal relation ∆A. We can impose these conditions on the set ΓA. For
the algebra A denote by ΓdiagA = (Γ1,diag

A ,Γ2,diag
A ) the pair of sets such that

Γ1,diag
A (j, a) ⇐⇒ Γ1

A(j, a) ∧ (∀b ∈ A,Γ1
A(j, b))

Γ2,diag
A (i, a, b) ⇐⇒ Γ2

A(i, a, b) ∧ (∀c ∈ A,Γ2
A(j, c, c)).

(2.65)

An n-ary operation P on algebra A is a polynomial operation if it is a polymorphism for
relations from ΓdiagA , i.e.

P ∈ Polynom(A) ⇐⇒ Poln(P,A,ΓdiagA ). (2.66)

For any two sets A and P the following Σ1,b
0 -definable relation claims that P is a ternary

discriminator on A:
PCD(A,P ) ⇐⇒ ∀a, b, c ∈ A,

(a = b ∧ P (a, b, c) = c) ∨ (a ̸= b ∧ P (a, b, c) = a).
(2.67)

Before the formalization of the ’only if’ implication of Theorem 21 as the polynomially
complete axiom scheme, we need to encode one more notion. For any congruence σ on
algebra A = (A,Ω), for factor algebra A/σ we will define the quotient set of relation ΓA/σ
as follows:

Γ1
A/σ(j, a) ⇐⇒ ∀a/σ ∈ A, Repm(a, a/σ,A/σ,A,Ω, σ) ∧ Γ1

A(j, a/σ)
Γ2

A/σ(i, a, b) ⇐⇒ ∀a/σ, b/σ ∈ A, Γ2
A(i, a/σ, b/σ)∧

∧Repm(a, a/σ,A/σ,A,Ω, σ) ∧Repm(b, b/σ,A/σ,A,Ω, σ).
(2.68)

The definition follows from log-space reduction from CSP(A/σ) to CSP(A). Note, that
for some i, j, Γ1

A,j/σ and Γ2
A,i/σ are empty sets, as well as Γ1,diag

A,j and Γ2,diag
A,i .

Definition 43 (PCA-axioms). For any constraint language ΓA over set A of size l, fixed
algebra A = (A,Ω) with Ω being an m-ary special WNU operation, and finitely many
subuniversesD of A and congruence blocks E of D the polynomially complete axiom scheme
is denoted by PCA-axioms and consists of the finitely many formulas of the following form

PCA,D,E =def ∀X = (VX , EX ), ∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
[∀j < n,∀B < l, ∀T < (3l)23

, Pol2(T,Dj ,ΓA)→ ¬BAsubS(B,Dj , T )∧
∧∀j < n,∀C < l,∀S < (4l)24

, Pol3(S,Dj ,ΓA)→ ¬CRsubS(C,Dj , S)]
∧∃σ < ⟨l, l⟩,∃D/σ < l,∃Ω/σ < (ml)2m+1

, FAm(D/σ,Ω/σ,D,Ω, σ)∧
∧∃P < (4l)24

, Pol3(P,D/σ,ΓdiagD /σ) ∧ PCD(D/σ, P )∧
SwNUm(Ω, D) ∧ PsubS(E,D) ∧ (∀a ∈ E,∀b ∈ D,σ(a, b)↔ b ∈ E)∧

∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧
∃i < n,Di = D∧

HOM¨ (X , Ä)
)︁
→ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., E, ..., Dn−1)).

(2.69)
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In this ∀Σ1,b
2 -formula, the first and the second lines in square brackets say that for any

domain Dj of instance Θ there are no binary absorbing or central subuniverses. The fourth
and fifth lines claim that there exists a congruence σ on D and the corresponding factor
algebra D/σ = (D/σ,Ω/σ) such that this factor algebra is polynomially complete. Note
that we define a discriminator P on factor set D/σ, and require that P is a polymorphism
for all relations from the quotient set of relation ΓdiagD /σ. The sixth line says that D is
closed under Ω, E is a proper subset of D and E is a congruence class of σ. Finally, the
rest of the formula says that if D coincides with a domain Di for some variable i, all the
above-mentioned conditions hold and there is a solution to the instance Θ, then there is
a solution to the instance Θ with Di restricted to the congruence class E.

2.5.3 A new theory of bounded arithmetic

For any relational structure A let us define a new theory of bounded arithmetic extending
the theory V 1, as follows.

Definition 44 (Theory V 1
A).

V 1
A =def V

1 + {BAA-axioms, CRA-axioms, PCA-axioms}.

Each of the universal algebra axiom schemes BAA-axioms, CRA-axioms, and PCA-axioms
consists of a finitely many ∀Σ1,b

2 -formulas for the fixed finite algebra A = (A,Ω) with a
special WNU operation Ω corresponding to the relational structure A = (A,ΓA).

We are going to show that for any structure A which leads to p-time solvable CSP, the
theory V 1

A proves the soundness of Zhuk’s algorithm.

2.5.4 Consistency reductions

Consistency reductions of Zhuk’s algorithm precede all other reductions and the lin-
ear case and include cycle-consistency reduction (function CheckCycleConsistency), ir-
reducibility reduction (function CheckIrreducibility) and weaker instance reduction (func-
tion CheckWeakerInstance), see [19]. Consider a CSP instance Θ = (X , Ä) with domain
set D = {D0, ..., Dn−1}. During consistency reductions the algorithm works with some
modifications of an input digraph X and a target digraph with domains Ä. At the end
of every procedure, the output is either "No solution" (some domain is empty after reduc-
tion), or "OK" (the algorithm cannot reduce any domain since the instance satisfies the
property we are checking), or the reduction (i,D′

i) of the first domain in a line that we
can reduce.

At the beginning of every procedure, for simplicity we will refer to every input instance
as the initial one, Θ = (X , Ä). It makes sense: after every reduction (i,D′

i) we start the
algorithm all from the beginning with the same input digraph (the same set of variables
and the same set of constraints) but with a smaller domain set D′ = {D0, ..., D

′
i, ..., Dn−1}:

we remove some vertices from Ä, which induces removing some edges. If the algorithm
moves to another procedure, it means that the previous one cannot reduce any domain -
so technically, we proceed with the same instance from the beginning of the current step
of recursion.

2.5.4.1 Cycle-consistency

In this section we will formalize the modification of the function CheckCycleConsistency
suggested by Zhuk in his latter paper [20]. In short, the algorithm first intersects all
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constraints and then uses constraint propagation to ensure a type of consistency called
(2, 3)-consistency. In words, (2, 3)-consistency means that for any variables i, j, k every
edge (i, j) extends to a triangle by edges (i, k) and (k, j). These two properties taken
together provide cycle-consistency. We explain the procedure in detail alongside the for-
malization.

Consider a CSP instance Θ = (X , Ä). First, for any two variables i, j the algorithm
defines a full relation Ri,j on domains Di × Dj . We define a new target digraph with
domains R̈ = (VR̈, ER̈, D0, ..., Dn−1), where VR̈ = VÄ, but while

EÄ(u, v) −→ ∃i, j < n ∃a, b < l u = ⟨i, a⟩ ∧ v = ⟨j, b⟩∧
Di(a) ∧Dj(b),

(2.70)

for ER̈ we have

ER̈(u, v) ⇐⇒ ∃i, j < n ∃a, b < l u = ⟨i, a⟩ ∧ v = ⟨j, b⟩∧
Di(a) ∧Dj(b).

(2.71)

That is, for all i, j ∈ {0, ..., n − 1}, EijR̈ is the full binary relation on Di × Dj (even for
those i, j, for which ¬EX (i, j) and ¬EX (j, i)).

Then for all i, j ∈ {0, ..., n − 1} the algorithm intersects each EijR̈ with projections of
all constraints onto the variables i, j. In our case, for i, j we have only constraints Di, Dj ,
EijÄ , and EjiÄ , i.e. we intersect EijR̈ only with EijÄ and EjiÄ . Let us denote new relations by
EijR̈0

:
EijR̈0

(a, b) ⇐⇒ (a ∈ Di ∧ b ∈ Dj)∧

∧(EX (i, j)→ EijÄ(a, b)) ∧ (EX (j, i)→ EjiÄ(b, a)).
(2.72)

Note that if there are no constraints EX (i, j) and EX (j, i), then at this point both
EijR̈0

and EjiR̈0
are still Di ×Dj , Dj ×Di. Then denote by Pr1(i, a) the intersection of the

projections of all constraints EijR̈0
on variable i:

Pr1(i, a) ⇐⇒ a ∈ Di ∧ ∀j < n, EX (i, j)→ ∃b ∈ Dj , E
ij

R̈0
(a, b)∧

∀k < n, EX (k, i)→ ∃c ∈ Dk, E
ki
R̈0

(c, a).
(2.73)

Let us define a new digraph R̈1 with domains by setting

VR̈1
(i, a) ⇐⇒ Pr1(i, a), (2.74)

and
EijR̈1

(a, b) ⇐⇒ Pr1(i, a) ∧ Pr1(j, b) ∧ EijR̈0
(a, b). (2.75)

Then the algorithm produces iterative propagation of constraints until it cannot change
any further relation. For every step of propagation t > 1, for all i, j ∈ {0, ..., n − 1} we
define a new set Rt as follows:

R1(i, j, a, b) ⇐⇒ EijR̈1
(a, b), (2.76)

and for t > 1

Rt(i, j, a, b) ⇐⇒ Rt−1(i, j, a, b)∧
∀k < n∃c < l Pr1(k, c) ∧ (Rt−1(i, k, a, c) ∧Rt−1(k, j, c, b)).

(2.77)
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The existence of this set is ensured by Σ1,b
1 -induction. For every step of propagation

t > 1, Rt(i, j, a, b) corresponds to the relation EijR̈t
and thus induces the next digraph with

domains R̈t. The process will eventually stop since on every step t > 1 we remove some
edges from R̈t−1, and the number of edges in R̈1 is bounded by some polynomial of n and
l, p(n, l). Let us prove it.

Denote the number of edges in R̈1 by q = #ER̈1
, i.e. the number of elements in

R1(i, j, a, b) is q. For every t ≤ (q+1) due to definition ∀i, j < n, ∀a, b < k, Rt(i, j, a, b)→
Rt−1(i, j, a, b). Suppose that for some t = q′ < q + 1 we have

∀i, j < n,∀a, b < l, Rq′(i, j, a, b) ⇐⇒ Rq′−1(i, j, a, b).

Then it means that the part

∀k < n∃c < l, Pr1(k, c) ∧ (Rt−1(i, k, a, c) ∧Rt−1(k, j, c, b))

is always true when t = q′. By induction on s we can prove that in this case

∀i, j < n,∀a, b < l, Rq′+s(i, j, a, b) ⇐⇒ Rq′−1(i, j, a, b)

since for s = 0 it is a suggestion, and if it is true for s = f , then we can rewrite the
definition of Rq′+f+1 using equivalent sets

Rq′+f+1(i, j, a, b) ⇐⇒ Rq′−1(i, j, a, b)∧
∀k < n∃c < l, Pr1(k, c) ∧ (Rq′−1(i, k, a, c) ∧Rq′−1(k, j, c, b)).

(2.78)

Now suppose that for every 1 < t ≤ (q + 1), ¬(Rt−1(i, j, a, b) → Rt(i, j, a, b)), i.e. for
every t there exist i, j < n, a, b < l such that Rt−1(i, j, a, b) ∧ ¬Rt(i, j, a, b), i.e. #Rt <
#Rt−1. Then by induction on t we can prove that #Rt ≤ q − (t− 1), therefore #Rq+1 ≤ 0
(the "worst" case - we removed all edges from R̈1). In both cases we proved that for every
t > q, Rt+1(i, j, a, b) ⇐⇒ Rt(i, j, a, b).

After the end of propagation, we reduce domains for the second time.

Prcc(i, a) ⇐⇒ Pr1(i, a) ∧ ∀j < n,EX (i, j)→ ∃b, Pr1(j, b) ∧ EijR̈q+1
(a, b)

∧∀k < n, EX (k, i)→ ∃c, Pr1(k, c) ∧ EkiR̈q+1
(c, a).

(2.79)

We denote the new (cycle-consistent) target digraph with domains by Äcc and set

VÄcc
(i, a) ⇐⇒ Prcc(i, a), (2.80)

and
EijÄcc

(a, b) ⇐⇒ (Prcc(i, a) ∧ Prcc(j, b)) ∧ EijR̈q+1
(a, b). (2.81)

Remark 2. In Zhuk’s algorithm, the original function CheckCycleConsistency in [19] re-
duces one domain Di at a time (as if in (2.79) we fix some i), outputs the result (xi, D′

i)
and starts all from the beginning. The modified function CheckCC in [20] returns all
reduced domains at once. Both do not return the reduced relations EijÄ : the algorithm
applies the function to the initial instance again and again until it cannot produce any
further reduction. Nonetheless, it does not affect the final result (we cannot produce two
different cycle-consistent reductions), so we omit these technical intermediate steps here.

Now we need to prove the following two statements:

1. The instance Θcc = (X , Äcc) is a cycle-consistent instance (according to definition).
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2. If the initial instance Θ = (X , Ä) has a solution, then Θcc has a solution.

Lemma 11. V 1 proves that if none of the domains VÄcc
(i), i < n is empty, then the

instance Θcc = (X , Äcc) is cycle-consistent.

Proof. Due to definitions (2.79)-(2.81), the instance Θcc is 1-consistent. For any i < n,
any a ∈ VÄcc

(i) consider any cycle Ct that can be homomorphically mapped into X with
H(0) = i and define the set H ′ < ⟨t, ⟨t, l⟩⟩ such that H ′(0) = ⟨i, a⟩ and for all j < t, k <
n,H(j) = k → H ′(j) = ⟨k, b⟩ for some b ∈ VÄcc

(k) (it exists since none of the domains is
empty). We need to prove that there is bk for each k < n such that H ′ is a homomorphism
from Ct to Ä. For this, it is enough to note that by the construction (2.78), the formula

∃b1, b2, ..., bt−1 < l, Ẽ
ik1
Äcc

(a, b1) ∧ Ẽk1k2
Äcc

(b1, b2) ∧ ... ∧ Ẽkt−1i

Äcc
(bt−1, a) (2.82)

where Ẽkiki+1
Äcc

(bi, bi+1) is either Ekiki+1
Äcc

(bi, bi+1) or Eki+1ki

Äcc
(bi+1, bi) depending on the cycle

Ct, is always true since for any a ∈ VÄcc
(i):

EiiÄcc
(a, a)→ ∃bt−1 < l, E

ikt−1
Äcc

(a, bt−1) ∧ Ekt−1i

Äcc
(bt−1, a),

...

Eik3
Äcc

(a, b3)→ ∃b2 < l, Eik2
Äcc

(a, b2) ∧ Ek2k3
Äcc

(b2, b3),

Eik2
Äcc

(a, b2)→ ∃b1 < l, Eik1
Äcc

(a, b1) ∧ Ek1k2
Äcc

(b1, b2).

(2.83)

Set H ′(i) = ⟨ki, bi⟩ for all 0 < i < t. This completes the proof.

Lemma 12. V 1 proves that instance Θ = (X , Ä) has a solution if and only if Θcc =
(X , Äcc) has a solution.

Proof. Suppose that there is a homomorphism H from X to Ä and it sends edge EX (i, j)
to EijÄ(a, b) for a ∈ Di, b ∈ Dj . Due to the definition of a homomorphism for both a and
b, EijÄ must satisfy (2.72)-(2.75) and we do not lose any solution after the intersection of
all constraints. That is, instead of the set {X → Ä} we can consider set {X → R̈1}.

Consider a formula ϕ(t) which says that if H is a homomorphism from X to R′
1, then

for every step t of propagation, for all i, j, k ∈ {0, 1, ..., n− 1}, all a, b, c < l

ϕ(t) = HOM¨ (X ,R′
1, H) ∧H(i) = ⟨i, a⟩ ∧H(j) = ⟨j, b⟩ ∧H(k) = ⟨k, c⟩ −→
(EijR̈t

(a, b) ∧ EikR̈t
(a, c) ∧ EkjR̈t

(c, b)).
(2.84)

For t = 1 this is true. For every constraint EX (i, j) the implication EijR̈1
(a, b) follows

from the definition of a homomorphism. For any i, j such that ¬EX (i, j) the implication
EijR̈1

(a, b) follows from the definition of EijR̈0
and (2.73)-(2.75): we do not remove edges

from R̈1 between domains not connected in a constraint without removing vertices. Thus,
if there remain some vertices, there will remain all edges between these vertices as well.

If ϕ(t) is true for t = s, then it is true for t = (s+1) due to construction (2.77). Hence,
{X → Ä} ⊆ {X → Äcc}. The opposite inclusion is trivial.

2.5.4.2 Irreducibility

Consider a cycle-consistent instance Θ = (X , Ä) with a domain set D = {D0, ..., Dn−1}.
The algorithm chooses a variable i and some maximal congruence σi on Di and denotes by
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I = {i} the set of the indices. Then it considers all other variables k such that k /∈ I and
for some j ∈ I there is a projection of some constraint C onto j, k. Since we consider at
most binary relations, and the instance is cycle-consistent, it follows that the projection of
any constraint EX (j, k) (or EX (k, j)) onto j, k is either the constraint relation EjkÄ (or EkjÄ )
or domains Dj , Dk. On domain Dk of such variable k, the algorithm generates relation σk
as follows:

EX (j, k) : σk(a, b) ⇐⇒ ∃a′, b′ ∈ Dj , σj(a′, b′) ∧ EjkÄ (a, a′) ∧ EjkÄ (b, b′). (2.85)

That is, the algorithm defines a partition on Dk according to the partition on Dj . Since
this new relation is constructed from relations compatible with Ω by pp-definition, it is
also compatible with Ω, and therefore is a congruence. If this congruence is proper, then
we have the same number of equivalence classes on Dk as on Dj , and elements from one
class in Dk are connected with elements only from one class in Dj . Otherwise, σj is not
maximal since we can define a new congruence on Dj in an analogous way as in (2.85).
The algorithm collects all such Dk with proper congruences σk into the list of indices I,
and then considers the projection ΘprX′ of the initial instance onto X ′ = {k|k ∈ I}. This
projection can be split into instances on smaller domains (corresponding to connected
classes in different domains), and these instances can be solved by recursion.
Remark 3. If there is no domain Dk such that σi generates on it a proper congruence,
the algorithm moves first to another maximal congruence σ′

i on Di and then to i + 1 ∈
{0, 1, ..., n− 1}.

For every k ∈ I we thus can check if the solution set to the projection ΘprX′ is subdirect.
If not, and for some k ∈ I there are b1, ..., bs such that there is no solution to ΘprX′ , then
the algorithm return D′

k = Dk\{b1, ..., bs} and runs from the beginning. If for all b ∈ Dk

there is no solution to ΘprX′ , then the algorithm returns "No solution". If the solution set
to ΘprX′ is subdirect, then the algorithm moves to another maximal congruence on Di,
and then to i + 1 ∈ {0, 1, ..., n − 1}. If the algorithm cannot reduce any domain Di, and
none of the domains is empty, the algorithm returns "OK".

For the formalization of the function CheckIrreducibility, for every domain Di let us
denote by σi(q, a, b) the list of all maximal congruences on Di (we know them in advance).
The number of all congruences on Di is some constant qi ≤ 2l2 . Then for every variable
i ∈ X, and every maximal congruence σqi (a, b) on Di we iteratively define the following set
of elements It,i,q(j, a, b), where t is the iteration step, i is fixed domain, q is fixed maximal
congruence, j is the considered domain and a, b are elements in one congruence class:

∀a, b < l, I0,i,q(i, a, b) ⇐⇒ σqi (a, b)∧
∧∀0 < t < n, k < n, a, b < l, It,i,q(k, a, b) ⇐⇒ It−1,i,q(k, a, b)∨

∨∃j < n, a′, b′ < l, It−1,i,q(j, a′, b′)∧
∧(EX (j, k) ∧ EjkÄ (a′, a) ∧ EjkÄ (b′, b)) ∨ (EX (k, j) ∧ EkjÄ (a, a′) ∧ EkjÄ (b, b′))∧

∧¬
[︁
∃c, d ∈ Dj ,∃e ∈ Dk, ¬It−1,i,q(j, c, d)∧

∧(EX (j, k) ∧ EjkÄ (c, e) ∧ EjkÄ (d, e)) ∨ (EX (k, j) ∧ EkjÄ (e, c) ∧ EkjÄ (e, d))
]︁
.

(2.86)

At step t = 0 the set I0,i,q contains only index i and (a, b) such that a, b ∈ Di are in
the same congruence class of σqi . At each further step t > 0 we add to It,i,q all elements
from It−1,i,q and indices of the domains connected to elements from It−1,i,q such that σqi
generates proper partitions on those domains. Lines 3-5 consider a connection between j
and k and define a partition on It,i,q(k), and lines 6-8 in square brackets checks that this
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partition is proper, i.e. no elements c, d ∈ Dj from different congruence classes connected
in Dk. Since we cannot add more than n elements to I, In,i,q contains all wanted elements.
The existence of this set is provided by induction on t on Σ1,b

1 -formula, and the implication
t→ (t+ 1) follows from comprehension axiom scheme Σ1,b

0 -CA.
Suppose that the algorithm returns "OK". We will denote the new target digraph with

domains after irreducibility reduction by Äir. Due to the algorithm, for each subinstance
Θ′
ir of Θir, considered by the function CheckIrreducibility, the solution set to Θ′

ir is sub-
direct. It is obvious that Θ′

ir is not fragmented and not linked. We can formalize the
properties of the instance Θir = (X , Äir) as follows: for every i ∈ VX and every maximal
congruence σqi

∀VX ′ < n,∀EX ′ < 4n2, X ′ = (VX ′ , EX ′),
((∀j < n,∃a, b < l, VX ′(j)↔ In,i,q(j, a, b))∧
∧(∀s, s′ < n, EX ′(s, s′)→ s, s′ ∈ VX ′)∧

∧(∀s, s′ ∈ VX ′ , EX ′(s, s′)↔ EX (s, s′)))→ subDSSInst(X ′, Äir).

(2.87)

We need to prove two statements:

1. The instance Θir = (X , Äir) is irreducible due to definition.

2. The initial instance Θ = (X , Ä) has a solution only if Θir has a solution.

We start with several technical lemmas.

Lemma 13. V 1 proves that for any cycle-consistent instance Θ = (X , Ä), for any i ∈ X,
relation Linked(a, b, i, i,Θ) is a congruence on Di.

Proof. Recall the definition of Linked(a, b, i, i,Θ).

Linked(a, b, i, i,Θ) ⇐⇒ ∃t < nl, VPt = t, EPt ≤ t2,
PATH(VPt , EPt) ∧ ∃H ≤ ⟨t, n⟩, HOM(Pt,X , H) ∧ (H(0, i) ∧H(t, i))∧

∧∃H ′ ≤ ⟨t, ⟨t, l⟩⟩, HOM¨ (Pt, Ä, H ′)∧
∧(∀k < n, p < t, (H(p, k)→ ∃c ∈ Dk, H

′(p) = ⟨k, c⟩))
∧H ′(0) = ⟨i, a⟩ ∧H ′(t) = ⟨i, b⟩.

(2.88)

First of all, for any a ∈ Di we have Linked(a, a, i, i,Θ). Indeed, since the instance is
cycle-consistent, it follows that for any cycle Ct that can be mapped to X with H(0, i), we
will have a homomorphism H ′ from Ct to Ä such that

∀j < n, k < t (H(k, j)→ ∃b ∈ Dj , H
′(i) = ⟨j, b⟩) ∧H ′(0) = ⟨i, a⟩.

Instead of cycle Ct consider a path Pt such that for all i < (t− 1)

EPt(i, i+ 1)↔ ECt(i, i+ 1) ∧ EPt(i+ 1, i)↔ ECt(i+ 1, i),

and for i = (t− 1)

EPt(i, i+ 1)↔ ECt(i, 0) ∧ EPt(i+ 1, i)↔ ECt(0, i),

and set H(t, i), H ′(t) = ⟨i, a⟩. Thus, Linked(a, b, i, i,Θ) is indeed a relation on the whole
Dx, and a reflexive one. To prove that the relation is symmetric, for any a, b such that

∃Pt < ⟨nl, (nl)2⟩, Linked(a, b, i, i,Θ,Pt),
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consider the inverse path P−1
t and define a new homomorphisms M,M such that for all

j ≤ t, k < n, c < l

M(j, k)↔ H(t− j, k) ∧M ′(j) = ⟨k, c⟩ ↔ H ′(t− j) = ⟨k, c⟩.

Finally, if for a, b, c ∈ Di, there are

∃Pt < ⟨nl, (nl)2⟩, Linked(a, b, i, i,Θ,Pt),

∃Pm < ⟨nl, (nl)2⟩, Linked(b, c, i, i,Θ,Pm),

we can consider the glued path Pt ◦ Pm, and use on the first and second parts of the path
homomorphisms corresponding to Pt and Pm respectively. Thus, the relation is transitive.

It remains to show that the relation is compatible with operation Ω, i.e. Polm,2(Ω, Di,
Linked[i,i,Θ]). But it follows from the fact that the set of all pairs (a, b) ∈ Linked[i,i,Θ] can
be defined by a pp-positive formula (see [19]), and therefore is in the list Γ2

A.

Note that since for every variable i ∈ X the algorithm checks every maximal congruence
on Di, it follows that Linked[i,i,Θ] is either contained in some maximal congruence or is a
maximal congruence itself. Also, for any cycle-consistent instance Θ = (X , Ä), for any its
subinstance Θ′ = (X ′, Ä) and any Di, i ∈ X ′

Linked(a, b, i, i,Θ′)→ Linked(a, b, i, i,Θ),

i.e. the congruence relation Linked[i,i,Θ] of the instance Θ contains the congruence relation
Linked[i,i,Θ′] of any its subinstance Θ′. By adding any new variable j ∈ X\X ′ to X ′ with
all induced edges from X , we cannot make relation Linked[i,i,Θ′] smaller since when it
comes down to being linked we consider the existence of a path, and for any a, b ∈ Di in
Linked[i,i,Θ′] the path already exists. But we can add some new paths, making Linked[i,i,Θ′]
larger.

Lemma 14. V 1 proves that if an instance Θ = (X , Ä) is not fragmented, then for any
i, j ∈ VX there exist t < n and a path Pt such that

∃H ≤ ⟨t, n⟩, HOM(Pt,X , Z) ∧H(0) = i ∧H(t) = j.

Proof. Consider the formula θ(t)

θ(t) =def t < n, i ∈ V 1
X , j ∈ V 2

X ∧ V 1
X = V 2

X = n ∧ #V 2
X (n) = t∧

∧PsubS(V 1
X , VX ) ∧ PsubS(V 2

X , VX ) ∧ (∀k < n, V 1
X (k)↔ ¬V 1

X (k))∧
∧∃m ≤ t,∃Pm, VPm = m,EPm < m2, PATH(VPm , EPm)∧

∧∃H ≤ ⟨m,n⟩, HOM(Pm,X , H) ∧H(0, j) ∧H(m, i′) ∧ i′ ∈ V 1
X .

(2.89)

For t = 1, the formula is true since ¬FragmInst(X , Ä). If θ(t) is true for t = s, then it is
also true for t = (s + 1). Indeed, since the instance is not fragmented, it follows that for
V 2

X , #V 2
X (n) = (s+1) there are two elements i′ ∈ V 1

X and j′ ∈ V 2
X such that there is an edge

EX (i′, j′) or EX (j′, i′). Then consider two sets V 1
X ∪{j′} and V 2

X \{j′}. Since #V 2
X \{j′} = s,

there has to be a path Pm,m ≤ s, and H ≤ ⟨m,n⟩ with H(0) = j,H(m) = i′′ for some
i′′ ∈ V 1

X ∪{j′}. If i′′ = j′, we get a path of length m ≤ (s+ 1) from j to i′. If i′′ ̸= j′, then
there is a path of length m ≤ s from j to some element i′′ ∈ V 1

X . Finally, it also must be
true for t = n− 1.
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Lemma 15. V 1 proves that if a cycle-consistent instance Θ = (X ,A) is not fragmented
and not linked, then for all Di there exist a, b ∈ Di such that ¬Linked(a, b, i, i,Θ).

Proof. Since the instance Θ is not linked, by definition there exist i ∈ VX and a, b ∈ Di such
that ¬LinkedCon(a, b, i, i,Θ). Suppose that there exists Dj such that for any a′, b′ ∈ Dj

we have LinkedCon(a′, b′, j, j,Θ), i.e. there exist some path Pt and a homomorphism H ′

from Pt to Ä connecting a′ and b′. Since the instance is not fragmented, due to Lemma
14 it follows that there exists a path Ps from i to j. Consider the reverse path P−1

s and
define a cycle C2s as follows:

VC2s = 2m ∧ ∀k < m, EC2s(k, k + 1)↔ EPs(k, k + 1)∧
∧ ↔ EC2s(k + 1, k)↔ EPs(k + 1, k)∧

∧∀r < (s− 1), EC2s(s+ r, s+ r + 1)↔ EP−1
s

(r, r + 1)∧
∧EC2s(s+ r + 1, s+ r)↔ EP−1

s
(r + 1, r)∧

∧EC2s(2s− 1, 0)↔ EP−1
s

(s− 1, s) ∧ EC2m(0, 2s− 1)↔ EP−1
s

(s, s− 1).

(2.90)

That is, in C2s we glued together the start and the end of paths Ps and P−1
s respec-

tively, and vice versa. This cycle can obviously be mapped into X , and due to cycle-
consistency for a, b ∈ Di there exist homomorphisms H ′

a, H
′
b from C2s to Ä such that

H ′
a(0) = ⟨i, a⟩, H ′

b(0) = ⟨i, b⟩. Suppose that H ′
a(s) = ⟨j, a′⟩ and H ′

b(s) = ⟨j, b′⟩ and con-
sider a path Ps ◦ Pt ◦ P−1

s . Then use homomorphism H ′
a for Ps, H ′ for Pt and H ′

b for
P−1
s . Thus, we have a path and a new homomorphism connecting a and b in Di. That is

a contradiction.

Remark 4. Note that in proof of Lemma 15 we have to use cycle-consistency. We can
ensure a path from i to j in X due to the fact that the instance is not fragmented, but
without cycle-consistency (or linked property) we cannot ensure that this path has proper
evaluation in Ä.

Lemma 16. V 1 proves that the instance Θir = (X , Äir) is irreducible.

Proof. Suppose that there exists a subinstance Θ′ = (X ′, Äir) such that X ′ = (VX ′ , EX ′),
VX ′ < n,EX ′ < 4n2, VX ′ is a subset of VX , EX ′ is a subset of EX , and

EX ′(x1, x2)→ x1, x2 ∈ VX ′ ,

and this instance is not fragmented, and not linked, and its solution set is not subdirect. We
need to prove that any such subinstance must be included in some subinstance generated
by the algorithm (and therefore must have a subdirect solution set).

Due to Lemma 15, for any i ∈ VX ′ there exist a, b ∈ Di, (a, b) /∈ Linked[i,i,Θ′], thus any
such congruence is proper. Fix some i ∈ X ′, and consider a maximal congruence σqi (a, b)
for some q < qi on Di that contains Linked[i,i,Θ′]. Consider subinstance Θ′′ = (X ′′, Ä),
defined as:

∀j < n,∃a, b < l, VX ′′(j)↔ In,i,q(j, a, b)∧
∧∀s, s′ < n, EX ′′(s, s′)→ s, s′ ∈ VX ′′∧
∧∀s, s′ ∈ VX ′′ , EX ′′(s, s′)↔ EX (s, s′).

(2.91)

We need to show two points:

1. For every j ∈ X ′ there exist a′, b′ ∈ Dj such that In,i,q(j, a′, b′) (i.e. X ′ is a subset
of X ′′).
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2. For every j ∈ X ′, for all a′, b′ ∈ Dj ,

In,i,q(j, a′, b′) −→ ∃a, b ∈ Di, In,i,q(i, a, b)∧
∧Linked(a, a′, i, j,Θ) ∧ Linked(b, b′, i, j,Θ),

and for all a, b ∈ Di, for all j ∈ X ′, a′, b′ ∈ Dj

In,i,q(i, a, b) ∧ Linked(a, a′, i, j,Θ) ∧ Linked(b, b′, i, j,Θ)→ In,i,q(j, a′, b′).

This means that in Θ′ the congruence σqi (a, b) generates the same partition on each
domain as in Θ′′.

For the first claim, note that since the instance Θ′ is not fragmented, due to Lemma 14 it
follows that V 1 proves that for any j ∈ VX ′ there exist s < n and a path Ps connecting i
and j. We go by the induction on the length of that path. For s = 0 we have I0,i,g(i, a, b),
for s = 1 consider some k such that EX ′(i, k) (or EX ′(k, i)). Since the instance is 1-
consistent, there exist some c, d ∈ Di, c′, d′ ∈ Dk such that

EX ′(i, k) ∧ EikÄ (c, c′) ∧ EikÄ (d, d′),

and the only thing we have to check due to defining equation (2.86) is that there are no
c, d ∈ Di, e ∈ Dk such that ¬I0,i,g(i, c, d) and

EX ′(i, k) ∧ EikÄ (c, e) ∧ EikÄ (d, e).

It follows immediately from the fact that if such c, d, e exist, then Linked(c, d, i, i,Θ′) and
therefore I0,i,q(i, c, d) (the congruence σqi (a, b) contains Linked[i,i,Θ′]). For the implication
s = t → s = (t + 1), suppose that for every k ∈ X ′ such that there exists a path
of length t connecting i and k, there exist j ∈ X ′, c, d ∈ Dj , c′, d′ ∈ Dk such that
It−1,i,g(j, c, d), and all other conditions of (2.86) hold. Note that for s = 0, 1 we established
Linked(c, c′, i, k,Θ′) ∧ Linked(d, d′, i, k,Θ′), so we can assume that this is true for s = t
as well. Then use the same reasoning.

The first implication of claim 2 follows from the above. For the second implication we
again use induction on the length of a path. For s = 0, 1 it follows from the definition of
In,i,q. For the implication s = t → s = (t + 1) suppose that for every k ∈ X ′ such that
there exists a path of length t connecting i and k, for any a, b ∈ Di and any a′, b′ ∈ Dk

such that In,i,q(i, a, b) ∧ Linked(a, a′, i, k,Θ) ∧ Linked(b, b′, i, k,Θ) we have In,i,q(k, a′, b′).
But since we can consider any path of length (t+ 1) as glued paths of length t and 1, the
implication for s = (t + 1) again follows straightaway from the definition of Ii,n,q. This
completes the proof.

Lemma 17. V 1 proves that Θ = (X , Ä) has a solution only if Θir = (X , Äir) has a
solution.

Proof. It is sufficient to show that if Θ has a solution, then Θ has a solution on domains
D0, ..., Dj−1, Dj\{b1, ..., bs}, Dj+1, ..., Dn−1 after irreducibility reduction of one domain
Dj . This is straightforward. Fix some i0 and suppose that the maximal congruence σqi0
divides Di0 to t equivalence classes. To make a reduction we consider some subgraph X ′ of
digraph X containing vertex i0 and such that it is connected and contains only vertices for
which domains Di1 , ..., Dig congruence σi0 generates proper congruences. Since instance Θ
is cycle-consistent, therefore for any s, t projection of EstÄ onto Ds, Dt Is subdirect. Thus,
we construct a subinstance ΘprX′ = (X ′, Ä) of instance Θ with the same target digraph
with domains (and the same domain set), but with another input digraph X ′.
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Suppose that there is a homomorphism from X to Ä. For every H ∈ {X → Ä} define
a new homomorphism H ↾X′ from X ′ to Ä as follows:

∀i ∈ {i0, i1, ..., ig}, H ↾X′ (i) = ⟨i, a⟩ ⇐⇒ H(i) = ⟨i, a⟩. (2.92)

That H ↾X′ is a homomorphism follows right from the definition of H. Therefore, {H ↾X′

} ⊆ {X ′ → Ä}. If for some j ∈ {i0, i1, ..., ig} and some b1, ..., bs there is no homomorphism
H ′ ∈ {X ′ → Ä} such that H ′(j) = ⟨j, b1⟩, ...,H ′(j) = ⟨j, bs⟩, then no homomorphism from
{X → Ä} sends j to ⟨j, b1⟩, ..., ⟨j, bs⟩.

2.5.4.3 Weaker instance

When the algorithm runs the function CheckWeakerInstance it makes a copy of Θ = (X , Ä)
and simultaneously replaces every constraint in the instance with all weaker constraints
without dummy variables. Then for every i ∈ {0, 1, ..., n−1} it checks if the obtained weaker
instance has a solution for xi = b, for every b ∈ Di (by recursively calling the algorithm on
a smaller domain). That is, the algorithm checks if the solution set to the weaker instance
is subdirect. Suppose that the algorithm considers some i, set D′

i = ∅. It fixes the value
xi = b and solves the weaker instance with domain set D0, ..., Di−1, {b}, Di+1, ..., Dn−1. If
there is a solution, then it adds b to D′

i and proceeds with another b′ ∈ Di. If there are
solutions for all b ∈ Di, the algorithm proceeds with i + 1. If for each b ∈ Di there is no
solution, the algorithm answers that the initial instance has no solution. If there are some
b1, ..., bk ∈ Di for which there is no solution to the weaker instance, the algorithm reduces
domain Di to D′

i = D\{b1, ..., bs}, returns (xi, D′
i) and starts from the beginning.

Consider a cycle-consistent irreducible instance Θ = (X , Ä). Any constraint in Θ is
either a domain Di for a variable i, or a relation EijÄ for an edge EX (i, j). Since Θ is
cycle-consistent, projections pri(EijÄ) and prj(EijÄ) are equal to Di, Dj . The algorithm
never increases domains, so we weaken only binary constraints and replace each EijÄ by
two different types of weaker constraints:

1. Di, Dj - weaker constraints of less arity;

2. All binary constraints from the list ΓA containing EijÄ except the full relation on
Di ×Dj .

Consider the intersection of all the above weaker constraints. Note that for any i we
have the same domain Di. We can lose some edges (i, j) from EX (when the only binary
relation containing EijÄ is the full relation on Di ×Dj) and can add some edges to Ä. Let
us denote the obtained weaker instance by Θweak = (Xweak, Äweak).

Lemma 18. V 1 proves that a CSP instance Θ = (X , Ä) has a solution only if Θ has a
solution after the weaker instance reduction.

Proof. It is obvious that if instance Θ has a solution, then Θweak has a solution (we did
not remove any edge or vertex from Ä and probably removed some edges from X : just
take the same homomorphism). That is, {X → Ä} ⊆ {Xweak → Äweak}.

Suppose that for some i there are b1, ..., bs ∈ Di such that there is no solution to Θweak,
i.e. there is no homomorphism H in {Xweak → Äweak} such that H(i) = ⟨i, b1⟩, ...,H(i) =
⟨i, bs⟩. It is needed to show that if Θ has a solution, then Θ has a solution on domains
D0, ..., Di−1, Di\{b1, ..., bs}, Di+1, ..., Dn−1. But it is trivial.
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2.5.5 Linear case

In this section we will formalize and prove the soundness of the linear case of Zhuk’s
algorithm in the theory V 1 using Σ1,b

1 -induction.

2.5.5.1 Formalization of the linear case in V 1

For the linear case of Zhuk’s algorithm, we need to define in V 1 some additional notions,
namely finite abelian groups and matrices over finite fields.

To formalize the finite abelian group Zp = {0, 1, ..., p − 1} we define sum operation
+(mod p) as follows:

c = a+(mod p) b←→ c < p ∧ c ≡ (a+ b) (mod p). (2.93)

We define the identity element to be 0 and the inverse element for any a < p, denoted
−(mod p)a, to be p −̇ a. Furthermore, for any m ∈ N and any a ∈ Zp we can define ·(mod p)
as follows:

c = m ·(mod p) a←→ c < p ∧ c ≡ (ma) (mod p). (2.94)

For fields (when p is a prime number) we can also define the multiplicative inverse for any
a ̸= 0, a ∈ Zp, denoted by a−1:

c = a−1 ←→ c < p ∧ c ̸= 0 ∧ c ·(mod p) a = a ·(mod p) c = 1. (2.95)

It is clear that +(mod p),−(mod p), ·(mod p) and 0 can be defined in a weak subtheory of V 1

and satisfy all properties of a finite abelian group. A weak subtheory of V 1 can also define
the multiplicative inverse modulo a prime and hence, in particular, V 1 proves that Zp is
a field. In our case, primes pi are even fixed constants.

An m × n matrix A over Zp is encoded by a relation A(i, j, a), we write Aij = a for
the corresponding entry. We will denote by MXm×n,p(A) a relation that A is an m × n
matrix over Zp. The sum of two m× n matrices A and B can be defined by a set-valued
function

C = A+B ←→MXm×n,p(C) ∧ ∀i < m, j < n Cij = Aij +(mod p) Bij , (2.96)

and the scalar multiplication bA of a number b ∈ Zp and an m×n matrix A can be defined
as:

C = bA←→MXm×n,p(C) ∧ ∀i < m, j < n Cij = b ·(mod p) Aij . (2.97)

The definability of matrix addition and scalar multiplication in V 1 is obvious. Finally,
to define the matrix multiplication, we will use the fact that V 1 defines the summation
of long sums, i.e. if C is a function with domain {0, ..., n − 1}, then V 1 defines the sum∑︁
i<nC(i) and proves its basic properties.

Indeed, consider Σ1,b
1 -induction on t ≤ n, where t is the number of elements in formula

ϕ(i, j, t, A,B) =def ∃X < ⟨t, p⟩, X0 = Ai0 ·(mod p) B0j∧
∀0 < k < tXk = Xk−1 +(mod p) Aik ·(mod p) Bkj .

(2.98)

Here X encodes the sequence of t partial sums, and by Xk we denote X(k). For t = 1,
ϕ(i, j, t, A,B) is true (since ·(mod p) is definable in V 1), and ϕ(i, j, t+ 1, A,B) follows from
ϕ(i, j, t, A,B) since +(mod p) is also definable in V 1. This uses Σ1,b

1 induction.
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We can thus define the multiplication of an m× n matrix A and an n× s matrix B as
follows:

C = AB ←→MXm×s,p(C) ∧ ∀i < m, j < s

Cij = Ai0 ·(mod p) B0j +(mod p) ...+(mod p) Ai(n−1) ·(mod p) B(n−1)j .
(2.99)

We will further use notation +,−, · instead of +(mod p),−(mod p) and ·(mod p) since it does
not lead to confusion.

2.5.5.2 Soundness of the linear case in V 1

We will call an instance Θ = (X , Ä), produced by the algorithm before the linear case, the
initial instance. As the first modification of the instance, we need to define a factorized
instance ΘL: at this step, we change the target digraph Ä and do not change instance
digraph X . The algorithm factorizes each domain separately and due to the assumption for
every domain Di there is the minimal linear congruence σi such that Di/σi is isomorphic
to linear algebra. Denote by σ < nl2 the set representing all congruences σi, σ(i, a, b) ⇐⇒
σi(a, b). The factorized target digraph with domains ÄL can be represented as an (n+ 2)-
tuple (VÄL

, EÄL
, D0/σ0, ..., Dn−1/σn−1), where VÄL

< ⟨n, l⟩, VÄL
(i, a) ⇐⇒ D/σi(a) and

EÄL
such that

EÄL
(s, r) ⇐⇒ ∃i, j < n ∃a, b < l, s = ⟨i, a⟩ ∧ r = ⟨j, b⟩∧

Di/σi(a) ∧Dj/σj(b) ∧ (∃c, d < l, σ(i, a, c) ∧ σ(j, b, d) ∧ EijÄ(c, d)).
(2.100)

In words, there is an edge between elements a, b representing classes [a]/σi and [b]/σj in
ÄL any time EijÄ ∩ [a]/σi × [b]/σj ̸= ∅. In the factorized target digraph constructed in
such a way, we actually can lose some edges (for example, when we glue all edges between
elements in [a]/σi and [b]/σj in one edge), but we also can get new solutions (for example,
when we get new cycles). We thus increase the set of solutions by simplifying the structure
of the target digraph with domains.

Theorem 22. V 1 proves that an instance Θ = (X , Ä) has a solution only if ΘL = (X , ÄL)
has a solution.

Proof. Consider a CSP instance Θ = (X , Ä) with VX = n, VÄ < ⟨n, l⟩. Suppose that the
instance has a solution, i.e. there exists a homomorphism H from X to Ä. Construct the
factorized instance as mentioned above.

We first construct the canonical homomorphism Hc between the target digraph Ä and
the factorized digraph ÄL, and then show that there is a homomorphism from X to ÄL.
Define Hc as follows: for every u ∈ VÄ, and every v ∈ VÄL

Hc(u, v) ⇐⇒ ∃i < n, a, b < l, u = ⟨i, a⟩, v = ⟨i, b⟩ ∧ σ(i, b, a) ∧Di/σi(b).

That is, we send a vertex a to a vertex b in ÄL in the factorized domain Di/σi if and only if
b ∈ Di, b and a are in the same congruence class under σi, and b is a represent of the class
a/σi (the smallest element). This set exists due to Σ1,b

0 -comprehension axiom. Moreover,
it satisfies the relation of being a well-defined map between two sets VÄ and VÄL

. The
existence of b is ensured by the property of congruence relation σi (reflexivity), and the
uniqueness by our choice of representation of the factor set by the minimal element in the
class. It is left to show that

∀u1, u1, v1, v2 < ⟨n, l⟩(EÄ(u1, u2) ∧ Zc(u1, v1) ∧ Zc(u2, v2)→ EÄL
(v1, v2)),
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but this follows straightforwardly from the definition of Hc and EÄL
. Finally, to construct

a homomorphism from X to AL, consider set H ′ < ⟨n, ⟨n, l⟩⟩ such that

H ′(i) = v ⇐⇒ ∃u < ⟨n, l⟩(H(i) = u ∧Hc(u) = v.

It is easy to check that set H ′ satisfies the homomorphism relation between digraphs X
and ÄL. Thus, there is a solution to the factorized instance ΘL.

Suppose that there is a solution set to the instance Θ, the set of homomorphisms from
X to Ä, denoted by {X → Ä} = {H1, H2, ...,Hs}. We will call the set of all homomor-
phisms, constructed from H1, ...,Hs by canonical homomorphisms Hc the solution set to
Θ factorized by congruences, denoted by {X → Ä}/Σ = {H ′

1, ...,H
′
s} (some of the homo-

morphisms H ′
1, ...,H

′
s can be equivalent).

By the previous theorem, we established that ΘL has a solution only if Θ does. Now
to find solutions to ΘL we will use the translation of constraints into a system of linear
equations (we suppose that this translation is included in the algorithm’s transcription)
and run Gaussian Elimination. We thus need to show in V 1 that this process does not
reduce the solution set to ΘL. Let us recall that a matrix A is in the row echelon form if
it is either a zero matrix or its first non-zero entry of row i+ 1 must be on the right of the
first non-zero entry of row i, and these entries must be 1. Consider the system of linear
equations Ax̄ = b̄ for an m×n matrix A. Suppose that we have a sequence of m× (n+ 1)
matrices [A0|B0], [A1|B1], ..., [At|Bt], where [A0|B0] is the original augmented matrix of
the system of linear equations, [At|Bt] is a matrix in the row echelon form and every next
matrix is obtained from the previous one by one of the elementary row operations. Since
every elementary row operation can be simulated by left multiplication by an elementary
matrix, instead of defining elementary row operations, we define elementary matrices in
V 1.

We say that an m×m matrix E is elementary if E satisfies one of the following three
relations. The first of them corresponds to row-switching transformations

ELIm×m,p(E) ⇐⇒ MXm×m,p(E) ∧ ∃i′ ̸= j′ < m∀i, j < m

(i ̸= i′ ∧ i ̸= j′ → Eii = 1) ∧ (i ̸= i′ ∧ j ̸= j′ ∧ i ̸= j → Eij = 0)
∧(Ei′i′ = 0 ∧ Ej′j′ = 0 ∧ Ei′j′ = 1 ∧ Ej′i′ = 1),

(2.101)

the second one corresponds to row-multiplying transformations

ELIIm×m,p(E) ⇐⇒ MXm×m,p(E) ∧ ∃a ̸= 0 ∈ Zp∃i′ < m

∀i, j < m(i ̸= i′ → Eii = 1) ∧ (i ̸= j → Eij = 0) ∧ Ei′i′ = a,
(2.102)

and the last one corresponds to row-addition transformations

ELIIIm×m,p(E) ⇐⇒ MXm×m,p(E) ∧ ∃a ̸= 0 ∈ Zp∃i′, j′ < m∀i, j < m

(Eii = 1 ∧ (i ̸= j ∧ i ̸= i′ ∧ j ̸= j′ → Eij = 0) ∧ Ei′j′ = a.
(2.103)

Let us denote these elementary matrices by T 1, T 2, T 3. If we consider matrix [A|B], then
matrices T 1[A|B], T 2[A|B] and T 3[A|B] are matrices produced from [A|B] by elementary
row operations. Since V 1 can define long sums it is easy to show that V 1 proves that each
of elementary row operations preserves the solution set to Ax̄ = b̄.

Lemma 19. V 1 proves that for every matrix [A|B] there is a row-echelon matrix [A′|B′]
having the same solution set.

69



Proof. Use Σ1,b
1 -induction.

Suppose now that we have established the solution set to the factorized instance ΘL,
{X → ÄL}, and assume that {X → Ä}/Σ ⊊ {X → ÄL}. We will further proceed
with iterative steps of the algorithm, the first iteration (see Section 2.4.2). We arbitrarily
choose a constraint EX (i, j) and replace it with all weaker constraints without dummy
variables, making the initial instance weaker. It can be done either by adding some edges
to the relation EijÄ (note that new edges have to be preserved by WNU operation Ω) or by
removing the edge (i, j) from X (when the only relation containing EijÄ is the full relation
on Di × Dj). Without loss of generality, suppose that we start with X . We prove the
following theorem by induction on the number of edges removed from X . The process
of removing can be interrupted by modifications of Ä as well, but since this interruption
happens only the constant number of times (the number of edges we can add to Ä is a
constant), we can consider the constant number of separate inductions as one from start
to the end.

Theorem 23. Consider two CSP instances, the initial instance Θ = (X , Ä) and the
factorized instance ΘL = (X , ÄL), and suppose that the solution set to the initial instance
factorized by congruences is a proper subset of the solution set to the factorized instance,
i.e. {X → Ä}/Σ ⊊ {X → ÄL}.

Then V 1 proves that there exists a subsequence of instance digraphs X = X0, ...,Xt
(and a subsequence of target digraphs with domains Ä = Ä0, ..., Äs), where t ≤ n(n − 1)
is the number of edges removed from X , {Xt → Äs}/Σ ̸= {X → ÄL}, and if one removes
any other edge from Xt, every solution to ΘL will be a solution to {Xt+1 → Äs}/Σ.

Proof. Since {X → Ä}/Σ ⊊ {X → ÄL}, there is some point (a1, ..., ak) in free variables
y1, ..., yk such that ϕ(a1, ..., ak) is a solution to ΘL, but if we restrict domains D0, ..., Dn−1
of Θ to congruences blocks corresponding to ϕ(a1, ..., ak), there is no solution to Θ. Thus,
there is some homomorphism HL from X to ÄL such that for any well-defined map H from
X to Ä, where every xi is mapped to the corresponding domain Di and HL = H ◦ Hc,
there exists an edge EX (i1, i2) in X that failed to be mapped into an edge in Ä. The
theory V 1 can count the number of elements in every set. Denote by q = #EX the number
of edges in X , q ≤ n2. Consider the following formula θ(t),

θ(t) =def ∃HL < ⟨n, ⟨n, l⟩⟩,MAP (VX , n, VÄL
, ⟨n, l⟩, HL)∧

∧(∀i < n,w < ⟨n, l⟩, HL(i) = w → ∃a < l, w = ⟨i, a⟩ ∧Di/σi(a))∧
∧∀i1, i2 < n,∀w1, w2 < ⟨n, l⟩

(EX (i1, i2) ∧HL(i1) = w1 ∧HL(i2) = w2 → EÄL
(w1, w2))

∧
∀i, j < n, EXt(i, j)→ EX (i, j) ∧ (q − t) ≤ #EXt(i, j)∧

∧∀u, v < ⟨n, l⟩, EÄ(u, v)→ EÄs
(u, v)

∧
MAP (VX , n, VÄ, ⟨n, l⟩, H) ∧ ∀i < n,w < ⟨n, l⟩

H(i) = w → ∃a < l, w = ⟨i, a⟩ ∧Di(a)
∧

∀i < n, v < ⟨n, l⟩, HL(i) = v ←→ ∃u < ⟨n, l⟩(H(i) = u ∧Hc(u) = v)
=⇒
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∃i1, i2 < n,∃w1, w2 < ⟨n, l⟩, ¬(EXt(i1, i2) ∧H(i1) = w1 ∧H(i2) = w2 →
→ EÄs

(w1, w2)).

The first part of the formula expresses that there is a homomorphism HL from X
to ÄL. The second part formalizes that the input digraph Xt is constructed from X by
removing at least t edges (and the target digraph Äs is constructed from Ä by adding some
edges). The third and fourth parts say that there is a well-defined map H from VX to
VÄ satisfying all restrictions on domains and such that HL is a composition of H and the
canonical homomorphism Hc. And the last part expresses that if all previous conditions
are true, then H cannot be a homomorphism from Xt to Äs.

In the formula θ(t) as fixed parameters we use X = (VX , EX ), q = #EX , the target
digraph with domains Ä = (VÄ, EÄ), VÄ < ⟨n, l⟩ and #EÄ < ⟨n, l⟩2, the factorized
digraph with domains ÄL = (VÄL

, EÄL
) and the canonical homomorphism Hc. Induction

goes on variables t and the instance digraph Xt = (VX , EXt) such that (q − t) = #EXt .
Finally, witnesses in Σ1,b

1 -induction corresponding to t are the target digraph with domains
Äs = (VÄs

, EÄs
) and the map H from VX to VÄ.

By assumption, the formula θ(t) is true for t = 0. We also know that it is false for
t = q since for all i1, i2 < n there is ¬EXt(i1, i2). Since θ(t) is Σ1,b

1 -formula, we can use
the Number maximization axiom:

∀H ≤ ⟨n, ⟨n, l⟩⟩, ∀Äs,
[︁
θ(0)→ ∃q′ ≤ q(θ(q′) ∧ ¬∃q′′ ≤ q(q′ < q′′ ∧ θ(q′′)))

]︁
.

This completes the proof.

Lemma 20. Consider two CSP instances, the initial instance Θ = (X , Ä) and the instance
Θt,s = (Xt, Äs), where t ≤ n(n−1) is the number of edges removed from the initial digraph
X and s ≤ ⟨n, l⟩2 is the number of edges added to the target digraph Ä. V 1 proves that
instance Θ has a solution only if Θt,s has a solution.

Proof. Suppose that there is a solution to the instance Θ, a homomorphism H, and the
instance Θt,s is constructed from Θ by removing t arbitrary edges from X and adding some
s edges to Ä. Then it is straightforward to check that H is also a solution to Θt,s.

For further iterations of Zhuk’s algorithm, we will prove the following theorem.

Theorem 24. Consider two CSP instances, the initial instance Θ = (X , Ä) and the
instance Θt,s = (Xt, Äs), where t ≤ n(n − 1) is the number of edges removed from the
initial digraph X and s ≤ ⟨n, l⟩2 is the number of edges added to the target digraph with
domains Ä. Suppose that the solution set to the initial instance factorized by congruences
is a proper subset of the intersection of the solution set to the instance Θt,s factorized by
congruences and the solution set to the factorized instance ΘL, i.e. {X → Ä}/Σ ⊊ {Xt →
Äs}/Σ ∩ {X → ÄL}.

Then V 1 proves that there exists a subsequence of instance digraphs X = X0, ...,Xr (and
a subsequence of target digraphs with domains Ä = Ä0, ..., Äf ), where r ≤ n(n− 1) is the
number of edges removed from X such that {Xr → Äf}/Σ ̸= {Xt → Äs}/Σ ∩ {X → ÄL}
and if one removes any other edge from Xr, every solution to {Xt → Äs}/Σ ∩ {X → ÄL}
will be a solution to {Xr+1 → Äf}/Σ.

Proof. The proof is analogous to the proof of Theorem 23. Let us define a slightly modified
formula θ′(r). We now consider two homomorphisms, HL from X to ÄL, and Ht,s from
Xt to Äs such that HL is a composition of Ht,s and canonical homomorphism Hc (it is
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equivalent to the condition that solutions to both instances are in {Xt → Äs}/Σ ∩ {X →
ÄL}).

θ(r) =def ∃HL < ⟨n, ⟨n, l⟩⟩,MAP (VX , n, VÄL
, ⟨n, l⟩, HL)∧

∧(∀i < n,w < ⟨n, l⟩, HL(i) = w → ∃a < l, w = ⟨i, a⟩ ∧Di/σi(a))∧
∧∀i1, i2 < n,∀w1, w2 < ⟨n, l⟩,

(EX (i1, i2) ∧HL(i1) = w1 ∧HL(i2) = w2 → EÄL
(w1, w2))

∧
∃Ht,s < ⟨n, ⟨n, l⟩⟩

(︁
MAP (VXt , n, VÄs

, ⟨n, l⟩, Ht,s)∧
∧(∀i < n,w < ⟨n, l⟩ Ht,s(i) = w → ∃a < k,w = ⟨i, a⟩ ∧Di(a))∧

∧∀i1, i2 < n,∀w1, w2 < ⟨n, l⟩
(EXt(i1, i2) ∧Ht,s(i1) = w1 ∧Ht,s(i2) = w2 → EÄs

(w1, w2))
∧

∀i < n, v < ⟨n, l⟩HL(i) = v ←→ ∃u < ⟨n, k⟩(Ht,s(i) = u ∧Hc(u) = v)
∧

∀i, j < n EXr (i, j)→ EX (i, j) ∧ (q − r) ≤ #EXr (i, j)∧
∧∀u, v < ⟨n, l⟩ EÄ(u, v)→ EÄf

(u, v)

∧
MAP (VX , n, VÄ, ⟨n, l⟩, H) ∧ ∀i < n,w < ⟨n, l⟩

H(i) = w → ∃a < l, w = ⟨i, a⟩ ∧Di(a)
∧

∀i < n, v < ⟨n, l⟩ZL(i) = v ←→ ∃u < ⟨n, l⟩(H(i) = u ∧Hc(u) = v)
=⇒

∃i1, i2 < n,∃w1, w2 < ⟨n, l⟩ ¬(EXr (i1, i2) ∧H(i1) = w1 ∧H(i2) = w2

→ EÄf
(w1, w2)).

In formula θ′(r) as fixed parameters we use parameters similar to parameters in the
formula θ(t), but add here Xt = (VX , EXt), q − t = #EXt and As = (VAs , EAs), s < ⟨n, l⟩2
as well. Induction goes on variable r and the instance digraph Xr = (VX , EXr ) such
that (q − r) ≤ #EXr . Witnesses to the induction are the target digraph with domains
Äf = (VÄf

, EÄf
) and the map H from VX to VÄ.

2.5.6 The main result

Theorem 25 (The main result). For any fixed relational structure A which corresponds
to an algebra with WNU operation and therefore leads to p-time solvable CSP, the theory
V 1

A proves the soundness of Zhuk’s algorithm.

Proof. Consider any unsatisfiable CSP instance Θ = (X , Ä). It is sufficient to show that
in the computation W = (W1,W2, ...,Wk) of the algorithm on X , for all possible types of
algorithmic modifications the theory V 1

A proves that Wi has a solution only if Wi+1 has a
solution.

In Section 2.5.4 we have shown that V 1 proves that:

• the instance Θ has a solution only if it has a solution after cycle-consistency reduction
(Lemma 12);

72



• the instance Θ has a solution only if it has a solution after irreducible reduction
(Lemma 17);

• the instance Θ has a solution only if it has a solution after the weaker instance
reduction (Lemma 18).

The three universal algebra axiom schemes BAA-axioms, CRA-axioms, and PCA-
axioms defined in Section 2.5.2 by ∀Σ1,b

2 -formulas validate universal algebra reductions
of any domain Di to a binary absorbing subuniverse, central subuniverse or to an arbi-
trary equivalence class of polynomially complete congruence on Di.

Finally, in Section 2.5.5 we have shown that V 1 validates:

• factorization of the instance by minimal linear congruences (Theorem 22);

• Gaussian elimination (Lemma 19);

• decreasing of the solution set to the factorized instance (Theorems 23, 24, Lemma
20).

This completes the proof.

The result implies that tautologies ¬HOM(X ,A) for negative instances of any fixed
p-time CSP have short proofs in any propositional proof system simulating Extended
Resolution and a theory that proves the three universal algebra axioms.

2.6 Conclusion notes
In the paper we investigate the proof complexity of general CSP. We proved the soundness
of Zhuk’s algorithm in a new theory of bounded arithmetic defined by augmenting the two-
sorted theory V 1 with three universal algebra axioms. These axioms are designed to verify
universal algebra reductions, while the soundness of consistency reductions and the linear
case of the algorithm is proved directly in the theory V 1.

Consistency reductions open the algorithm and represent its most technical part. For-
malization of the consistency reductions uses iteratively defined sets and Σ1,b

1 -induction.
The linear case is the last step of Zhuk’s algorithm after all reductions of separate domains.
However, it does not lead to linear equations straightforwardly: structures in the linear
case have to be factorized first. The proof of the soundness of the linear case is based on
the formalization of Gaussian elimination and linear factorization and uses Σ1,b

1 -induction.
In contrast, universal algebra axioms stand apart. Despite the fact that they can

be defined by ∀Σ1,b
2 -formulas, their proof in a theory of bounded arithmetic requires the

formalization of advanced notions from universal algebra and this will be a subject of
further research.

Theorem 15 allows one to consider constraint languages with at most binary relations
instead of general CSP. We tested how to utilize the framework and strategy of getting
short propositional proofs using bounded arithmetic in [14] on an elementary example
of undirected graphs (the H-coloring problem). In that case, the theory of bounded
arithmetic corresponds to a weak proof system R∗(log), a mild extension of resolution.

Every theory of bounded arithmetic corresponds to some propositional proof system.
The theory V 1 stands for polynomial time reasoning and corresponds to the Extended
Frege EF proof system (equivalently Extended resolution ER). Our working hypothesis is
that the soundness of Zhuk’s algorithm can be established utilizing only Σ1,b

1 -induction.
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If it is true, then statements ¬HOM(X , Ä) for unsatisfiable instances of polynomial time
CSP(A) will have short propositional proofs in EF. The next step in our program is to
investigate the boundaries of the theory V 1 in formalizing of universal algebra notions.
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3. Proof complexity of universal
algebra in a proof of CSP
dichotomy
This chapter is the third part of the longer project, aiming to establish the sound-
ness of Zhuk’s algorithm. By soundness, we mean the formula RejectA(X ,W ) =⇒
¬HOM(X ,A), where RejectA(X ,W ) formalizes naturally that W is the algorithm com-
putation on input X that results in rejection, and ¬HOM(X ,A) means that there is no
homomorphism from X to A. In Chapter 2 (ref. [6]) we have shown that for any fixed re-
lational structure A that corresponds to an algebra A with WNU operation, the theory V 1

A
proves the soundness of Zhuk’s algorithm, where V 1

A extends the theory V 1 with three uni-
versal algebra axiom schemes BAA-axioms, CRA-axioms, and PCA-axioms. These axiom
schemes consist of finitely many ∀Σ1,b

2 -formulas and reflect the main theorems in Zhuk’s
paper [15], namely Theorems 5.5, 5.6. Informally, they state that by reducing a domain
of an instance to its binary absorbing subuniverse, central subuniverse, or PC subuniverse
(see [16]), the algorithm does not lose all the solutions to the instance. For the formal
definition of these axiom schemes in Section 3.2.9, we first repeat the formalization of all
the necessary notions.

In this chapter, we have used the bounded arithmetic W 1
1 introduced in [10] to for-

malize the proofs of these three axiom schemes. Formalization, together with the known
relation of the theory to propositional calculus G, completes the proof of the following
main theorem. Recall the translation of first-order formulas to propositional ones [4].

Theorem 26 (The main theorem). For any particular relational structure A such that
CSP(A) is in P :

1. Theory W 1
1 proves the soundness of Zhuk’s algorithm. That is, the theory proves the

formula RejectA(X ,W ) =⇒ ¬HOM(X ,A).
2. There exists a p-time algorithm F such that for any unsatisfiable instance X , i.e. such
that ¬HOM(X ,A), the output F (X ) of F on X is a propositional proof of the proposition
translation of formula ¬HOM(X ,A) in propositional calculus G.
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3.1 Preliminaries

3.1.1 Auxiliary relations and functions

For any two relations R1, R2 of the same arity, we will use standard denotations for
R1 ⊆ R2, R1 ⊊ R2, R1 = R2, R1 ̸= ∅, as opposed to Chapter 1 (ref. [5]) and Chapter
2 (ref. [6]), where we wanted to stay in the classical low-level relational-set notation of
bounded arithmetic. We introduce the following relations and functions as in [4]. The
string function row(i, Z), or Zi, representing the row i of a binary array Z, has a bit-
defining axiom:

Zi(a) = row(i, Z)(a) ⇐⇒ (a < |Z| ∧ Z(i, a)). (3.1)

We can use row to represent a tuple Z1, ..., Zk of strings by a single string Z. We use a
similar idea to allow Z coding a sequence y0, y1, ... of numbers. Now yi is the smallest
element of Zi, or |Z| if Zi is empty. The number function seq(i, Z) (also denoted by zi)
has the following defining axiom:

a = seq(i, Z) ⇐⇒ (a < |Z| ∧ Z(i, a) ∧ ∀b < a,¬Z(i, b))∨
∨(∀b < |Z|,¬Z(i, b) ∧ a = |Z|).

(3.2)

To get the maximum or minimum elements of the set R, we define functions max and
min naturally:

max(R) = |R| − 1,
min(R) = x ⇐⇒ ∀y < |R|, R(y)→ x ≤ y.

(3.3)

We define the ordering relation for strings as follows:

X ≤ Y ⇐⇒ X = Y ∨
(︁
|X| ≤ |Y | ∧ ∃z ≤ |Y |(Y (z) ∧ ¬X(z)∧

∧∀u ≤ |Y |, z < u→ (X(u)→ Y (u)))
)︁
.

(3.4)

That is, we compare strings based on numbers they represent as binary coding (the greater
the number, the greater the string). Finally, we give Σ1,b

0 bit-definitions of the string
functions ∅ (constant empty string) and S(X) (successor):

∅(z) ⇐⇒ z < 0, (3.5)

and

S(X)(i) ⇐⇒
(︁
i ≤ |X| ∧ ((X(i) ∧ ∃j < i,¬X(j)) ∨ (¬X(i) ∧ ∀j < i,X(j)))

)︁
. (3.6)

3.1.2 A Third-Order Language

To refer to exponentially large objects such as power sets, congruences on products of
algebras of size comparable to |A| = l, and so forth, we use the setting introduced in [10].
In addition to free and bound variables of first and second sorts, we consider variables of
a third sort that represent finite sets of finite sets, named A,B, C, ... and X, Y,Z, .... We
refer to second-sort objects as ’strings’, and to third-sort objects as ’classes’ (note that in
the original setting in [10] classes were referred to as ’superstring’, but this name does not
reflect the type of objects we discuss). The language L3

PA contains an additional symbol
for the third-order membership predicate A ∈3 B,

L3
PA = {0, 1,+, ·, | |,=1,=2,≤,∈2,∈3}.
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Classes can be also thought of as strings of bits, where each bit is indexed by a set referred
to as bit-index. There is no length-function analog for classes, so the ’length’ of a class in
this setting is the lexicographically maximal bit-index under consideration. Number terms
are defined as in V 1, not including any reference to third-order variables, while formulas
additionally may have third-order variables and quantifiers. We extend the hierarchy Σ1,b

i

of second-order formulas to third-order classes ΣB
i that consist of those formulas with ar-

bitrarily many bounded first-order and second-order quantifiers, and exactly i alternating
unbounded third-order quantifiers, the outermost being restricted, i.e. equivalent to the
existential quantifier. We also define a specific class ∀2ΣB

i of formulas consisting of a single
bounded universal second-order quantifier followed by a ΣB

i -formula.
Although third-order variables are unbounded because of the absence of a length func-

tion, they will be implicitly bounded, in the sense that the bounds on first-order and
second-order quantifiers will limit the part of the class that affects the truth value of a
given formula.

Theory W 0
1 and W 1

1 presented in [10] have ∀2ΣB
0 -IND or ∀2ΣB

1 -IND induction axiom
scheme respectively (the unusual class of formulas is a technicality, W 1

1 admits full ΣB
1 -

induction), and the following two comprehension axiom schemes, namely ΣB
0 -2COMP:

∃Y ≤ t(x̄, X̄)(∀z ≤ s(x̄, X̄))
(︁
ϕ(x̄, X̄,X̄, z) ⇐⇒ Y (z)

)︁
,

and ΣB
0 -3COMP:

∃Y(∀Z ≤ t(x̄, X̄))
(︁
ϕ(x̄, X̄,X̄, Z) ⇐⇒ Y(Z)

)︁
,

where in each case ϕ ∈ ΣB
0 subjects to the restriction that neither Y nor Y occur free in

ϕ. Recall that V is a two-sorted version of the theory S2 from [3].
Lemma 21 ([11]). W 0

1 is a conservative extension of V , the two-sorted theory for the
poly-time hierarchy.

Thus, ΣB
0 -definable functions of number and string arguments are usual p-time hi-

erarchy functions. ΣB
1 -definable functions of W 1

1 are exactly FPSPACE+, a third-order
analogue of PSPACE functions (see [11]). W 1

1 can ΣB
0 -define all number and string-valued

functions of number and string arguments from the polynomial-time hierarchy. We can
add pairing functions for second-order objects, such as ⟨X,Y ⟩ and ⟨x, Y ⟩, using the fol-
lowing natural definitions.

⟨X,Y ⟩ = Z(i, a) ⇐⇒ (i = 0 ∧X(a)) ∨ (i = 1 ∧ Y (a)), (3.7)
and

⟨x, Y ⟩ = Z(i, a) ⇐⇒ i = x ∧ Y (a). (3.8)
For a third-order variable X define X[x](Y ) ≡ X(⟨x, Y ⟩) and X[X](Y ) ≡ X(⟨X,Y ⟩).

This notation allows us to consider X as an array with rows indexed by numbers or strings,
where each row is a third-order object. Note that as opposed to a string-valued function
row(i, Z), this notation is just an abbreviation of the formula, not a class-valued function.
However, if we can bound the size of all strings in a class we are interested in by some
value s, then we can define a string-valued function row̃(·) analogous to row(·),

row̃(i,X, s) = Y ⇐⇒ (|Y | < s ∧X[i](Y ) ∧ ∀Y ′ < Y ¬X[i](Y ′))∨
∨(∀Y ′ < s¬X[i](Y ′) ∧ ∀a < s, ¬Y (a) ∧ |Y | = s ∧ Y (s− 1)),

(3.9)

where Y ′ < Y is string ordering relation (3.4). Thus, the function returns the minimum
string (due to string ordering) Y of length less than s such that X[i](Y ) or, if such a string
does not exist, the string Y of length s with the only element s − 1 ∈ Y . An analogous
function row̃(X,X, s) can be defined for string indexing.
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3.1.3 Quantified propositional calculus G and its correspondence to W 1
1

In this section we recall the definition of the sequent calculus G. We adopt definitions
from [9].

The class of quantified propositional formulas, denoted by Σq
∞, is the smallest class of

formulas containing atoms 0, 1, and closed under logical connectives and Boolean quan-
tification: if ϕ(x) is a formula in Σq

∞, then so are ∃xϕ(x) and ∀xϕ(x), and the meaning is
ϕ(0)∨ϕ(1) and ϕ(0)∧ϕ(1), respectively. The proof system G for quantified propositional
formulas extends a classical proof system, the sequent calculus LK. For the sake of com-
pleteness, we recall the definition of LK here.

Definition 45 (Sequent Calculus LK). A line in an LK-proof is a sequent: it is an ordered
pair of finite, possibly empty sequences of formulas Γ, ∆ written as

Γ −→ ∆,

that is satisfiable if and only if there is an assignment that either makes some formula in
Γ false or makes some formula in ∆ true. Thus, if Γ = ϕ1, ..., ϕm and ∆ = ψ1, ..., ψn, then
the sequent is equivalent to the formula

¬ψ1 ∨ ... ∨ ¬ϕm ∨ ψ1 ∨ ... ∨ ψn.

The inference rules of the sequent calculus LK are the following:

1. Initial sequents are the following:

p −→ p, 0 −→, −→ 1,

where p is a variable.

2. Structural rules are:

• the weakening rules

left: Γ −→ ∆
ϕ,Γ −→ ∆ right: Γ −→ ∆

Γ −→ ∆, ϕ

• the exchanging rules

left: Γ1, ϕ, ψ,Γ2 −→ ∆
Γ1, ψ, ϕ,Γ2 −→ ∆ right: Γ −→ ∆1, ϕ, ψ,∆2

Γ −→ ∆1, ψ, ϕ,∆2

• the contraction rules

left: Γ1, ϕ, ϕ,Γ2 −→ ∆
Γ1, ϕ,Γ2 −→ ∆ right: Γ −→ ∆1, ϕ, ϕ,∆2

Γ −→ ∆1, ϕ,∆2

3. Logical rules are:

• ¬-introduction rules

left: Γ −→ ∆, ϕ
¬ϕ,Γ −→ ∆ right: ϕ,Γ −→ ∆

Γ −→ ∆,¬ϕ

• ∧-introduction rules

left: ϕ,Γ −→ ∆
ϕ ∧ ψ,Γ −→ ∆ right: Γ −→ ϕ,∆ Γ −→ ∆, ψ

Γ −→ ∆, ϕ ∧ ψ
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• ∨-introduction rules

left: ϕ,Γ −→ ∆ ψ,Γ −→ ∆
ϕ ∨ ψ,Γ −→ ∆ right: Γ −→ ϕ,∆

Γ −→ ∆, ϕ ∨ ψ

4. The cut-rule is:
Γ −→ ∆, ϕ ϕ,Γ −→ ∆

Γ −→ ∆
An LK-proof of a sequent S is a sequence of sequents that starts with initial sequents

and ends with S, where each sequent in the proof is produced from previous ones by using
the inference rules.

Definition 46 (Sequent calculus G). Quantified propositional calculus G extends system
LK by allowing Σq

∞-formulas in sequents and by accepting two quantifier rules:

1. ∀ :introduction

left: ϕ(ψ),Γ −→ ∆
∀xϕ(x),Γ −→ ∆ right: Γ −→ ∆, ϕ(p)

Γ −→ ∆, ∀xϕ(x)

2. ∃ :introduction

left: ϕ(p),Γ −→ ∆
∃xϕ(x),Γ −→ ∆ right: Γ −→ ∆, ϕ(ψ)

Γ −→ ∆, ∃xϕ(x)

where ψ is any formula such that no variable occurrence free in ψ becomes quantified in
ϕ(ψ), and variable p does not occur in lower sequences of inference rules.

In [4] there is presented the well-known translation of any ϕ(x̄, X̄) ∈ Σ1,b
0 into a family

of propositional formulas,

||ϕ(x̄, X̄)|| = {ϕ(x̄, X̄)[m̄, n̄] : m̄, n̄ ∈ N} (3.10)

such that the following lemma holds:

Lemma 22 ([4]). For every Σ1,b
0 (L2

PA) formula ϕ(x̄, X̄), there is a constant d ∈ N and
a polynomial p(m̄, n̄) such that for all m̄, n̄ ∈ N, the propositional formula ϕ(x̄, X̄)[m̄, n̄]
has depth at most d and size at most p(m̄, n̄).

Propositional translation of formulas Σ1,b
0 (L2

PA) can be extended to the translation
of any bounded L2

PA-formula into a quantified propositional formula, using strings of
Boolean quantifiers to represent second-order quantifiers, [4]. Let us denote the class of
all bounded L2

PA formulas by

Σ1,b
∞ =

⋃︂
i

Σ1,b
i =

⋃︂
i

Π1,b
i .

The following theorem establishes the correspondence between theory W 1
1 and quantified

propositional calculus G. It follows from [10], specifically from Theorems 12, 13.

Theorem 27. Suppose that ϕ(x̄, X̄) is a Σ1,b
∞ formula such that W 1

1 ⊢ ϕ(x̄, X̄). Then the
propositional family ||ϕ(x̄, X̄)|| has quantified propositional calculus proofs of polynomial
size. That is, there is a polynomial p(m̄, n̄) such that for all 1 ≤ m̄, n̄ ∈ N, ϕ(x̄, X̄)[m̄, n̄]
has a G-proof of size at most p(m̄, n̄). Furthermore, there is an algorithm that finds a
G-proof of ϕ(x̄, X̄)[m̄, n̄] in time bounded by a polynomial in (m̄, n̄).
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3.2 Formalization of notions
In this section we shall use the formalization of notions introduced in Chapter 2 (ref. [6])
and we shall formalize all the remaining notions of universal algebra that will be used to
prove the three axiom schemes from Chapter 2 (ref. [6]), as well as some specific notions
introduced by Zhuk in [15]. Notions not formalized in this section are defined earlier
in Chapter 2 (ref. [6]). We can repeat some definitions from Chapter 2 (ref. [6]) for
consistency of the text if we introduce some new notation or objects based on previous
ones. We know of no way to prove that a formalization exists other than actually doing it.
This leads to a quite formal (and occasionally tedious) text with long formulas. Writing
the formulas explicitly allows us to see that their bounded quantifier complexity is what
is claimed.

Notation 10. To simplify the notation for the reader, we will denote relations on numbers
using capital letters and functions using lowercase letters. We sometimes omit arguments
in relations that are obviously implied and do not affect the content of the relation. We
index elements of sets starting with 0, while all indices not related to elements of sets (for
example, a sequence of relations) start from 1.

3.2.1 A—Monster Set: objects we have in advance

In this section we describe the list of objects we will further refer to as objects given
in advance. The algorithm works for any finite algebra having a weak near unanimity
(WNU) term and uses the fact that this term and all the properties of the algebra are
known. From now on, we fix the algebra A = (A,Ω), fix l to be its size, and suppose
that the only basic operation of A is an idempotent special WNU m-ary operation Ω. To
be consistent with Zhuk’s paper, we do not use bold font for subuniverses of A. For the
corresponding relational structure, we fix the notation A = (A,ΓA), where ΓA is explained
below.

Let Sound(A) denote the soundness of Zhuk’s algorithm for algebra A. Recall from
Chapter 2 (ref. [6]) that this formalizes that if the algorithm rejects an instance, then
the instance has no solution. In theory T we can consider proving not just Sound(A) but
more generally an implication of the form

Cond(A) =⇒ Sound(A),

where Cond(A) is any recursively enumerable property of algebra A. It can be written as

∃Y Cond0(A, Y ),

where Y , in general, cannot be bounded (even recursively), and Cond0 can be a second-
order bounded formula. In our case, Y is a list of various objects such as subuniverses,
binary relations preserved by Ω on A or any subuniverse D of A, ternary operations on
A, isomorphisms from subalgebras (D,Ω) of A to products of finite fields, etc. together
with V 0-proofs of their various Σ1,b

0 -properties. The proofs are given simply by exhaustive
searching, unwinding all quantifiers. Therefore, the size of the monster list Y may be huge,
in particular exponential, in the size of A, but in general it does not matter: whatever
function of l it is, it is a constant for fixed l.

Note that if W witnesses Cond(A), we can prove Cond0(A,W ) in V 0 (a constant size
proof) and apply modus ponens to the implication above to deduce Sound(A), which is
what we really want to prove in T . This argument applies whenever T contains V 0, which
is true in our case.
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The use of this can be illustrated as follows. Assume P (D) and Q(D) are two bounded
properties of a subuniverse D of A and assume that in the monster set Y we have two lists
of all subuniverses together with proofs that they do or do not satisfy P and Q respectively.
A universal statement

∀D, subAlgebra(D,A), P (D)→ Q(D)

can then be simply proved by going through Y and checking that every D in the list of
those satisfying P is also in the list of those satisfying Q; this uses a composition of proofs
listed in Y . Another example of use is the following. The properties of Z that may involve
second-order universal bounded quantifiers, as, for example, in

∀D, subAlgebra(D,A), ϕ(Z,D)

with ϕ ∈ Σ1,b
0 , can be rewritten as Σ1,b

0 -formulas: replace the universal quantifier by a
large (but constant size) conjunction over all subalgebras of A as listed in the monster set
Y .

This allows us to use well-known facts from universal algebra, as well as facts proved
by Zhuk in [15], without proving them in a theory of bounded arithmetic when it comes
to the formalization of objects related exclusively to algebra A. For example, we will not
prove that any PC congruence σ on A is maximal or that polynomially complete algebra
A/σ is simple. Although we believe that all the properties of different objects on A needed
in the argument can be proved in Σ1,b

1 -reasoning even with A variable, it is not necessary
for our purpose. On the contrary, we shall prove any property related to an input structure
since this structure is variable.

We further list all the given in advance objects related to A we will use in the formal-
ization, so-called A-Monster set. All of them will be defined in detail in the corresponding
sections.

• All subuniverses of A and any of its subuniverse D, the lists Γ1
A, Γ1

D;

• All binary relations on A and any of its subuniverse D, compatible with Ω, the lists
Γ2

A, Γ2
D;

• All congruences σ on A and any of its subuniverse D, the lists ΣA, ΣD;

• All factor sets for congruences σ on A and any of its subuniverse D, A/σ and D/σ,
and all operations Ω/σ, the lists AA(i, A/ΣA,i,Ω/ΣA,i), AD(i,D/ΣD,i,Ω/ΣD,i);

• All maximal congruences on A and any of its subuniverse D, the lists Σmax
A , Σmax

D ;

• For all congruences σ on A and any of its subuniverse D, the lists of all unary and
binary quotient relations on A and D, compatible with Ω/σ. We will denote the
lists by ΓA/σ, ΓD/σ.

• The sets of all binary and ternary polymorphisms on A and any of its subuniverse
D, the lists Π2

A,Π3
D;

• For all congruences σ on A and any of its subuniverse D, the sets of all binary and
ternary polymorphisms on A/σ and D/σ, the lists Π2

A/σ,Π3
D/σ;

• For all congruences σ on A and any of its subuniverse D, the sets of all maps H
from A/σ to Zp0 , all maps H from A/σ to Zp0 × Zp1 ,..., all maps H from A/σ to
Zp0 ×Zp1 × ...×Zps−1 , for s = log2l and any prime p0, ..., ps−1, p0 · ... · ps−1 ≤ l. We
will denote these lists by MA,σ,p0,...,pt−1 , MD,σ,p0,...,pt−1 .
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• The set of all linear congruences on A and any of its subuniverse D, the lists Σlin
A ,

Σlin
D ;

• For any subuniverse C of A and any of its subuniverse D, all sets of the form
X = {{a} × C,C × {a}} for all a ∈ A\C. We denote the lists by XA, XD;

• The set of all PC congruences on A and any of its subuniverse D, the lists ΣPC
A ,

ΣPC
D .

• For all congruences θ on A and any of its subuniverse D, and for all PC congruences
σ0, ..., σs−1 on A and any of its subuniverse D, the sets of all maps H from A/θ to
A/σj0 , all maps H from A/θ to A/σj0 ×A/σj1 ,..., all maps H from A/θ to A/σj0 ×
A/σj1 × ... × A/σjs−1 , for s = log2l. We denote these lists by MA,θ,σj0 ,σj1 ,...,σjt−1

,
MD,θ,σj0 ,σj1 ,...,σjt−1

.

• For all subuniversesDi, Dj of A, all congruences σi, σj onDi, Dj , the set of all bridges
from σi to σj , the set of all reflexive bridges and the set of all optimal bridges, the
lists Ξσi,σj , Ξ↔

σi,σj
and Ξoptσi,σj

.

Due to the definitions of all these sets (given in the corresponding sections), they may be
empty.

Notation 11. In formulas, we use notation
⋀︁

Σmax
A,i

or
⋁︁

ΣD,i
meaning

⋀︁
Σmax

A,i ̸=∅ or
⋁︁

ΣD,i ̸=∅:
here we consider conjunction over all maximal congruences on A or disjunction over all
congruences on its subuniverse D. Sometimes, we also write

⋀︁
σ∈Σmax

A
or

⋁︁
B∈Γ1

A

⋁︁
T∈Π2

A
with the same meaning. When needed for better clarity, we use the explicit notation
∃j < 2l2 , ...ΣPC

A,j ....

3.2.2 Encoding directed graphs and CSP instances

We will code a CSP instance on relational structures with at most binary relations in the
following way.

Definition 47. A directed input graph is a pair X = (VX , EX ) with VX (i) for all i <
VX = n and EX (i, j) being a binary relation on VX (there is an edge from i to j). A target
digraph with domains is a pair of sets Ä = (VÄ, EÄ), where:

• VÄ < ⟨n, l⟩ is the set corresponding to the superdomain; we denote set VÄ,i by Di

and call it domain subset for variable xi;

• EÄ < ⟨⟨n, l⟩, ⟨n, l⟩⟩ is the set encoding that there is an edge (a, b) between Di and
Dj :

EÄ(u, v)→ ∃i, j < n ∃a, b < l u = ⟨i, a⟩ ∧ v = ⟨j, b⟩∧
Di(a) ∧Dj(b).

(3.11)

Sometimes we consider set D = {D0, ..., Dn−1}. We use the notation EijÄ(a, b) instead of
EÄ(⟨i, a⟩, ⟨j, b⟩) for simplicity. We will denote a pair of sets Θ = (X , Ä), satisfying all the
above conditions, by DG(Θ), and we will call Θ an instance. This representation allows
us to construct a homomorphism from X to Ä with respect to different relations EijÄ and
different domains for all vertices x1, ..., xn.
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Definition 48. A pair of sets Θ = (X , Ä) is a CSP instance on n domains over constraint
language ΓA if

Inst(Θ,ΓA) ⇐⇒ DG(Θ) ∧ ∀i < n, |Di| = l∧
∧∀i, j < n, a, b < l,∃s < |ΓA|, EÄ(⟨i, a⟩, ⟨j, b⟩)↔ Γ2

A(s, a, b)∧
∧∀i < n, a < l, ∃s < |ΓA|, Di(a)↔ Γ1

A(s, a).
(3.12)

When considering the direct product D0 × ... × Dn−1, we can refer to it as a set of
solutions to a CSP instance Θnull = (Xnull, Änull), where

• VXnull
= n and for all i < n, VXnull

(i);

• for all i, j < n, ¬EXnull
(i, j) (i.e. the instance digraph Xnull has no edges at all);

• for all a < l, VÄnull
(i, a) ⇐⇒ Di(a);

• for all a, b < l, for all i, j < n, ¬EijÄnull
(a, b) (i.e. the target digraph Änull has no

edges at all).

We will denote a pair of sets Θnull = (Xnull, Änull) satisfying all the above conditions by
DGnull(Θnull). Since as domains we consider only subuniverses Di of A = (A,Ω), Θnull

is also a CSP instance over constraint language ΓA. Sometimes, we will work with the
so-called factorized instances, where we factorize all domains Di by congruences σi.

Definition 49. A pair of sets Θ′ = (X ′, Ä′) is a factorized CSP instance by list of n
congruences Σ on n domains from a CSP instance Θ over constraint language ΓA if

FInst(Θ′,Σ,Θ,ΓA) ⇐⇒ Inst(Θ,ΓA) ∧ X = X ′ ∧ ∀i < n, FSm(D′
i, Di,Ω,Σi)∧

∧∀i, j < n, Eij
Ä′(a, b)↔ D′

i(a) ∧D′
j(b) ∧ (∃c, d < l, Σi(a, c) ∧ Σj(b, d) ∧ EijÄ(c, d)),

(3.13)

where definition of the relation FSm can be found in Chapter 2 (ref. [6]).

Definition 50 (Homomorphism from digraph X to digraph with domains Ä). A map
H is a homomorphism between the input digraph X = (VX , EX ), VX = n and the target
digraph with domains Ä = (VÄ, EÄ), VA < ⟨n, l⟩ if H is a homomorphism from X to Ä
sending each i ∈ VX to domain Di in VÄ. The statement that there exists such H can be
expressed by the following Σ1,b

1 -formula.

HOM¨ (X , Ä) ⇐⇒ ∃H < ⟨n, ⟨n, l⟩⟩
(︁
MAP (VX , n, VÄ, ⟨n, l⟩, H)∧

(∀i < n, s < ⟨n, l⟩ H(i) = s→ ∃a < l, s = ⟨i, a⟩ ∧Di(a))∧
∀i1, i2 < n,∀j1, j2 < ⟨n, l⟩

(EX (i1, i2) ∧H(i1) = j1 ∧H(i2) = j2 → EÄ(j1, j2)).

(3.14)

In addition to a homomorphism between two digraphs of different types, we will also
need a classical homomorphism between digraphs of the same type. The existence of such
a homomorphism between digraphs G and H with VG < n, VG < m is again a Σ1,b

1 -formula.

HOM(G,H) ⇐⇒ ∃H < ⟨n,m⟩
(︁
MAP (VG , n, VH,m,H)∧

∀i1, i2 < n,∀j1, j2 < m

(EG(i1, i2) ∧H(i1) = j1 ∧H(i2) = j2 → EH(j1, j2))
)︁
.

(3.15)

Notation 12. Sometimes, we will write ∃(∀)H < ⟨n,m⟩, HOM(G,H, H) and ∃(∀)H <
⟨n, ⟨n, l⟩⟩, HOM¨ (X , Ä, H) to omit repetitions. Note that HOM(G,H) and HOM¨ (X , Ä)
are Σ1,b

1 -formulas, while HOM(G,H, H) and HOM¨ (X , Ä, H) are Σ1,b
0 .
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3.2.3 Subalgebras and Solution sets to a CSP instance

Recall that we encode the fixed algebra A with a pair of sets (A,Ω), where |A| = l, A(i) for
every i, and Ω is a set of size ((m+ 1)l)2m+1 representing a special m-ary WNU operation
on A, while all subuniverses of A are encoded by subsets of A closed under Ω. To define
the direct and subdirect products of k algebras for constant k, we first define a universe
set for the product. For any sets D0, ..., Dk−1 of size bounded by l we will denote by
D0 × ...×Dk−1 a k-ary set of the form

D0 × ...×Dk−1(a0, ..., ak−1) ⇐⇒ a0 ∈ D0 ∧ ... ∧ ak−1 ∈ Dk−1. (3.16)

As any m-ary operation F : Dm → D on a set D in Chapter 2 (ref. [6]), we define an
m-ary operation F : (D0× ...×Dk−1)m → D0× ...×Dk−1 on a set D0× ...×Dk−1. Denote
⟨a0
i , ..., a

k−1
i ⟩ by āki , then

OPm(F,D0 × ...×Dk−1) ⇐⇒ ∀āk1, ..., ākm ∈ D0 × ...×Dk−1,

∃b̄k ∈ D0 × ...×Dk−1, F (āk1, ..., ākm, b̄
k) ∧ ∀b̄k1, b̄

k
2 ∈ A0 × ...×Dk−1,

(F (āk1, ..., ākm, b̄
k
1) ∧ F (āk1, ..., ākm, b̄

k
2)→ b̄

k
1 = b̄

k
2).

(3.17)

In the same fashion, we can formalize a special idempotent WNU operation Ω on the set
D0 × ...×Dk−1, and can define a subuniverse R of algebra (D0 × ...×Dk−1,Ω):

subTA(R,D0 × ...×Dk−1,Ω) ⇐⇒ |R| = |D0 × ...×Dk−1|∧

∀i < (kl)2k
, R(i)→ D0 × ...×Dk−1(i) ∧ SwNUm(Ω, R).

(3.18)

We say that an algebra D = (D,Ω) is a direct product of k algebras (D0,Ω0), ...,
(Dk−1,Ωk−1) of the same type (with m-ary operations) if

DPm,k(D,Ω, D0,Ω0, ..., Dk−1,Ωk−1) ⇐⇒ D = D0 × ...×Dk−1∧
∧∀a0

1, ..., a
0
m ∈ D0, ...,∀ak−1

1 , ..., ak−1
m ∈ Dk−1∃b0 ∈ D0, ...,∃bk−1 ∈ Dk−1

Ω(āk1, ..., ākm, ⟨b0, ..., bk−1⟩) ∧ Ω0(a0
1, ..., a

0
m, b

0) ∧ ... ∧ Ωk−1(ak−1
1 , ..., ak−1

m , bk−1).
(3.19)

A subdirect product (R,Ω) of k algebras (D0,Ω0), ...,(Dk−1,Ωk−1) is encoded as follows:

subDPm,k(R,Ω, D0,Ω0, ..., Dk−1,Ωk−1) ⇐⇒ subTA(R,D0 × ...×Dk−1,Ω)
∧DPm,k(D0 × ...×Dk−1,Ω, D0,Ω0, ..., Dk−1,Ωk−1)∧

∧
⋀︂
i<k

∀ai ∈ Di, ∃a0 ∈ D0, ...,∃ai ∈ Di−1, ∃ai+1 ∈ Di+1, ...,∃ak−1 ∈ Ak−1,

R(a1, ..., ai−1, ai, ai+1, ..., ak).

(3.20)

To move to the solution set to a CSP instance, we recall the following theorem [1].

Theorem 28. Let B = (B,Γ) be a finite relational structure, and let R ⊆ Bn be a
non-empty relation. Then R is preserved by all polymorphisms of Γ if and only if R is
pp-definable from Γ.

Note that the set of solutions to any instance of CSP(Γ) can be viewed as a subuniverse
of power of B. Every n-ary relation R on Bn preserved by all polymorphisms of Pol(Γ) is
a solution set to some CSP instance Θ with n variables over the language RelClone(Γ).
Thus, a relation R on Bn can be pp-defined from a set of relations Γ if it is equal to some
projection of the set of solutions to some instance of CSP(Γ). However, the instance itself
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can be exponential in n (see the construction in [1]). Furthermore, we cannot define a
subalgebra R of Bn as an n-ary set R(b1, ..., bn) as it requires (ln)2n length. We shall
stress that since most of the theorems in the universal algebra part of Zhuk’s algorithm
that are proved for any subalgebras were used in the algorithm only for solution sets [15],
whenever possible, we restrict ourselves upward to solution sets to some CSP instances
over ΓA.

For definitions, we use the ΣB
0 -3COMP axiom scheme. We can consider any n-ary

relation R on An as a third-order object – a class of maps R from [n] to [A,A, ..., A].
Analogously, any R ≤ D0× ...×Dn−1 is a class of maps from [n] to [D0, D1, ..., Dn−1]. In
terms of digraphs,

R(H) =⇒ MAP (VX , n, VÄ, ⟨n, l⟩, H), (3.21)
which is ΣB

0 -formula, and

D0 × ...× Dn−1(H) ⇐⇒ MAP (VX , n, VÄ, ⟨n, l⟩, H), (3.22)

which is already Σ1,b
0 -formula. To make from D0× ...×Dn−1 an algebra, we define a third-

order object representing a basic m-ary function FΩ0,...,Ωn−1 on D0 × ... × Dn−1 (again,
Σ1,b

0 -formula):

FΩ0,...,Ωn−1(H1, ...,Hm, H) ⇐⇒ ∀i < n,∃ai1, ..., aim, ai < l, Ωi(ai1, ..., aim) = ai∧
∧H1(i) = ⟨i, ai1⟩ ∧ ... ∧Hm(i) = ⟨i, aim⟩ ∧H(i) = ⟨i, ai⟩.

(3.23)

If for all Di there is the same operation Ω, we denote this class by FΩ. Let us consider in
this section all Di being subalgebras of A = (A,Ω). For subuniverses, we require that R(H)
be closed under FΩ by the definition. In fact, we can express this requirement remaining
in the second-order setting. For any n, we introduce a string function ω of m maps from
[n] to [A,A, ..., A] returning a new map H by its bit-definition for all i < n, a < l:

ω(H1, ...,Hm)(⟨i, ⟨i, a⟩⟩) ⇐⇒ ∃a1, ..., am < l, Ω(a1, ..., am) = a∧
∧H1(i) = ⟨i, a1⟩ ∧ ... ∧Hm(i) = ⟨i, am⟩.

(3.24)

Note that ω is an actual function, not a set of sets, and it is based on the fixed set Ω. In
the same fashion, we can introduce a string function usepolk for any k-ary polymorphism
F on A by its bit-definition for all i < n, a < l:

usepolk(F,H1, ...,Hk)(⟨i, ⟨i, a⟩⟩) ⇐⇒ ∃a1, ..., ak < l, F (a1, ..., ak) = a∧
∧H1(i) = ⟨i, a1⟩ ∧ ... ∧Hk(i) = ⟨i, ak⟩.

(3.25)

We will denote such functions restricted by R by ωR and usepolRk . Thus, for any class R
representing subalgebra on An, and any maps H1, ...,Hm:

R(H1) ∧ ... ∧ R(Hm) =⇒ R(ω(H1, ...,Hm)). (3.26)

To consider a projection of subalgebra R to some subset of coordinates i1, ..., is, s < n, we
introduce a partial map from [n] to (D0, ..., Dn−1):

Ri1,...,is(H) ⇐⇒
⋀︂

i∈{i1,...,is}
∃!a ∈ Di, H(i) = ⟨i, a⟩∧

⋀︂
i/∈{i1,...,is}

∀a < l, ¬H < ⟨i, ⟨i, a⟩⟩∧

∃H ′ < ⟨n, ⟨n, l⟩⟩, R(H ′) ∧
⋀︂

i∈i1,...,is
H(i) = H ′(i).

(3.27)
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There are 2n = ∑︁n
s=0

(︁n
s

)︁
such different classes, but we do not need to define them all; we

will define the required occasionally. Note that ω and usepolk are well-defined for such
partial maps for i ∈ {i1, ..., is}.

The solution set to the instance Θ = (X , Ä) of CSP over ΓA, Ä = (D0, ..., Dn−1, EÄ),
is a set of homomorphisms {X → Ä} = {H1, H2, ...,Hs}. Let us denote it as RΘ. Note
that the definition is a Σ1,b

0 -formula.

RΘ(H) ⇐⇒ HOM¨ (X , Ä, H). (3.28)

In these terms, the product D0 × ...× Dn−1 can be considered as RΘnull
. The projection

Ri1,...,is
Θ of the solution set to some subset of coordinates is defined analogously to (3.27),

we call H ∈ Ri1,...,is
Θ a partial homomorphism from X to Ä.

Lemma 23. For any k > 0, V 1 proves that for any CSP instance Θ, any k-ary operation
F ∈ Polk(F,A,ΓA), and any k homomorphisms H1, ...,Hk from X to Ä (and for any
i ∈ {i1, ..., is}) a map H = usepoln,k(F,H1, ...,Hk) is again a homomorphism from X to
Ä (a partial homomorphism from X to Ä).

Proof. Recall that any polymorphism preserves all relations from ΓA. Every relation EijA
(set of edges from Di to Dj) is a subalgebra of Di ×Dj (since it is compatible with Ω).
The proof then goes by contradiction: suppose that there is an edge (xi, xj) ∈ EX (with
i, j ∈ {i1, ..., is}) such that H fails to map it to an edge in Ä. Since all (partial for
i ∈ {i1, ..., is}) homomorphisms H1, ...,Hk map (xi, xj) to some edge in EijÄ , it is possible
only if F does not preserve the relation EijÄ .

Corollary 1. V 1 proves that a solution set RΘ and a projection Ri1,...,is
Θ for any subset

of coordinates {i1, ..., is} for a CSP instance Θ = (X , Ä) on n variables are subuniverses
of An and A{0,1,...,n}\{i1,...,is} respectively.

We say that subuniverse R is subdirect if

subDSSInst(R) ⇐⇒ ∀i < n∀a ∈ Di, ∃H < ⟨n, ⟨n, l⟩⟩, H ∈ R ∧H(i) = ⟨i, a⟩. (3.29)

Note that this is a ΣB
0 -formula. If we consider solution set RΘ, then the definition becomes

a Σ1,b
1 -formula:

subDSSInst(RΘ) ⇐⇒ ∀i < n,∀a ∈ Di,

∃H < ⟨n, ⟨n, l⟩⟩, HOM¨ (X , Ä, H) ∧H(i) = ⟨i, a⟩.
(3.30)

Whenever possible, we refer to RΘ as a set of homomorphisms {X → Ä, } = {H1, H2, ...,
Hs}, i.e. we use ∀H ≤ ⟨n, ⟨n, i⟩⟩, HOM¨ (X , Ä, H) since this allows us to avoid third-sorted
objects.
Remark 5. Note that we cannot prove that any subalgebra of An is a solution set to
some CSP instance over ΓA (this is simply not true, otherwise we do not need existential
quantification in pp-definitions).

3.2.4 Congruence and congruence on products

We define relations Congm, pCongm to be a congruence and a proper congruence as in
Chapter 2 (ref. [6]). A maximal congruence on an algebra (D,Ω) can be defined by the
following Σ1,b

0 -formula:

maxCongm(D,Ω, σ) ⇐⇒ Congm(D,Ω, σ) ∧ ∃a, b ∈ D, ¬σ(a, b)∧
∧[

⋀︂
ΣD,i

(∃a, b ∈ D, ¬ΣD,i(a, b)→ ∃a, b ∈ D, σ(a, b) ∧ ¬ΣD,i(a, b))]. (3.31)
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Note that the standard definition of a maximal congruence σ for any (not fixed) algebra
B of size n is Π1,b

1 :

maxCongm(B,Ω, σ) ⇐⇒ Congm(B,Ω, σ) ∧ ∃a, b ∈ B, ¬σ(a, b)∧
∧[∀σ′ < ⟨n, n⟩, (Congm(B,Ω, σ′) ∧ ∃a, b ∈ B, ¬σ′(a, b))→

→ ∃a, b ∈ B, σ(a, b) ∧ ¬σ′(a, b)].
(3.32)

Analogously we can define a minimal congruence σ, by relation minCongm(D,Ω, σ). Each
block of a factor set, denoted by D/σ, is represented by its minimum element (it exists
by the Σ1,b

0 -MIN principle). Therefore, we also think of the factorized object D/σ as a
set of numbers. When we consider any congruence σ on D, we do not need to claim the
existence of sets D/σ and Ω/σ - there is a simple algorithm to construct them, and the
construction is unique. First, we define the following string function

factorset(D,σ)(a) = D/σ(a) ⇐⇒ a < |D| ∧ a ∈ D∧
∧(∀a′ ∈ D,σ(a, a′)→ a ≤ a′).

(3.33)

To represent an element we define a number function rep(a/σ,D, σ)

a = rep(a/σ,D, σ) ⇐⇒ σ(a, a/σ) ∧ factorset(D,σ)(a). (3.34)

Finally, we can define a string function returning Ω/σ using a bit-defining axiom:

factorω(D,Ω, σ)(b) = Ω/σ(b) ⇐⇒ ∃a1...∃am∃c ∈ D/σ, b = ⟨a1, ..., am, c⟩∧

∃a1/σ...∃am/σ∃c/σ ∈ D, c = rep(c/σ,D, σ) ∧
⋀︂
i<m

ai = rep(ai/σ,D, σ)∧

∧Ω(a1/σ, ..., am/σ, c/σ).

(3.35)

The following two claims follow straightforwardly from the definitions of congruence and
WNU operation.

Claim 1. Consider an algebra D = (D,ΩD), its subuniverse B and a congruence σ on D.
Then V 0 proves that σ restricted to B is a congruence on B.

Claim 2. Consider an algebra D = (D,ΩD) with Ω being a special WNU operation, and
a congruence σ on D. Then V 0 proves that for all a ∈ D, a congruence block [a]/σ is a
subuniverse of D.

For any congruence σ on algebra D = (D,Ω), for factor algebra D/σ we will define the
quotient set of relation ΓD/σ as follows:

Γ1
D/σ(j, a) ⇐⇒ ∀a/σ ∈ D, Repm(a, a/σ,D/σ,D,Ω, σ) ∧ Γ1

D(j, a/σ)
Γ2

D/σ(i, a, b) ⇐⇒ ∀a/σ, b/σ ∈ D, Γ2
D(i, a/σ, b/σ)∧

∧Repm(a, a/σ,D/σ,D,Ω, σ) ∧Repm(b, b/σ,D/σ,D,Ω, σ).
(3.36)

Note that for some i, j, Γ1
D,j/σ and Γ2

D,i/σ are empty sets. We will use it in the definition
of PC subuniverses. The formulas (3.36) follow from log-space reduction from CSP(D/σ)
to CSP(D), see [2]. We want to stress it directly here, not to repeat it many times. The
relation signatures of the structures corresponding to D and D/σ differ, and the relation
R ∈ ΓD/σ lifts to the relation R′ ∈ ΓD by the rule ā ∈ R′ ⇐⇒ ā/σ ∈ R. Thus, for
any binary or unary relation preserved by Ω/σ on D/σ its corresponding lifted relation is
preserved by Ω on D. That is, we already have all such relations in ΓA. Moreover, for any
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binary relation R on Di/σi × Dj/σj preserved by Ω/σ = (Ω/σi,Ω/σj) its lifted relation
on Di ×Dj is preserved by Ω under the same rule.

We define a binary relation Cσ on D0× ...×Dn−1 as a third-order object for all maps
from [n] to (D0, ..., Dn−1), Cσ(H1, H2). For Cσ being compatible with Ω, we require that
for any H1, ...,Hm, H

′
1, ...,H

′
m:

Cσ(H1, H
′
1) ∧ ... ∧ Cσ(Hm, H

′
m) =⇒ Cσ(ω(H1, ...,Hm), ω(, H ′

1, ...,H
′
m)). (3.37)

For Cσ being a congruence, we additionally require that for any three maps H1, H2, H3,

Cσ(H1, H1) ∧ ( Cσ(H1, H2)↔ Cσ(H2, H1))∧
∧( Cσ(H1, H2) ∧ Cσ(H2, H3)→ Cσ(H1, H3)).

(3.38)

We can restrict Cσ to any subuniverse R (we will call CR
σ a congruence restricted to R)

by requiring for all H,H ′,

CR
σ (H,H ′) =⇒ R(H ′) ∧ R(H ′). (3.39)

Now we return to second-order congruences and extend them to third-order objects.
The next three relations are expressed by Σ1,b

0 -formulas. For any congruence σi on Di we
say that two maps H1, H2 are in the same equivalence block on D0 × ...×Dn−1 if

1EqClass(i,H1, H2, Di, σi) ⇐⇒ ∀ai1 , ai2 < l,

H1(i) = ⟨i, ai1⟩ ∧H2(i) = ⟨i, ai2⟩ → σi(ai1 , ai2).
(3.40)

Then for any congruence σi on Di we define an extended relation Cσext
i

as follows:

Cσext
i

(H1, H2) ⇐⇒ 1EqClass(i,H1, H2, Di, σi). (3.41)

Analogously, for any σ0, ..., σn−1 where each σi is a congruence on Di, we define a relation
C∩nσext

i
on D0 × ...×Dn−1 as follows:

C∩nσext
i

(H1, H2) ⇐⇒ ∀i < n, 1EqClass(i,H1, H2, Di, σi). (3.42)

Notice that some congruences σi can be ∇Di or ∆Di . Obviously, for any three maps
H1, H2, H3 the relation 1EqClass is reflexive, symmetric, and transitive. Compatibility
can be proved easily again. Consider 2m maps H1, ...,Hm and H ′

1, ...,H
′
m such that for

every j < m, 1EqClass(i,Hj , H
′
j , Di, σi). Then, due to defining equation (3.24) of ω,

1EqClass(i, ω(H1, ...,Hm), ω(H ′
1, ...,H

′
2), Di, σi).

Note that in (3.42) we define a third-order object using only its second-order properties.
Thus, we have proved the following claims.

Claim 3. Consider D0 × ... ×Dn−1, and binary relations σ0, ..., σn−1 where σi is a con-
gruence of Di for every i. Then V 1 proves that any Cσext

i
and C∩nσext

i
are congruences

on D0 × ...× Dn−1.

Claim 4. Consider RΘ ≤ D0 × ... ×Dn−1, and binary relations σ0, ..., σn−1 where σi is
a congruence of Di for every i. Then V 1 proves that any Cσext

i
and C∩nσext

i
restricted to

RΘ are congruences on RΘ.

We get the following lemma with Claim 2.

90



Lemma 24. Consider RΘ ≤ D0 × ... ×Dn−1, and binary relations σ0, ..., σn−1 where σi
is a congruence of Di for every i. Suppose that Ei is a congruence block of σi for all i.
Then V 1 proves that (E0 × ...× En−1) ∩ RΘ is a subuniverse of RΘ.

We need to define factor sets and factor operations for third-order objects. We first
show how to define them for solution set RΘ and extended congruence Cσext

i
and the

intersection of extended congruences C∩nσext
i

. To be compatible with the definition of
factor sets for second-order objects, we need to choose not the existing map of RΘ, but
that sending i to ai = rep(ai/σi, Di, σi) for every σi.

factorset(RΘ, C∩nσext
i

)(H) = RΘ/C∩nσext
i

(H) ⇐⇒ ∃H ′ ≤ ⟨n, ⟨n, l⟩⟩, H ′ ∈ RΘ∧

∧C∩nσext
i

(H,H ′)∧
∧∀i < n,∃ai ∈ Di, H

′(i) = ⟨i, ai/σi⟩ ∧H(i) = ⟨i, rep(ai/σi, Di, σi)⟩.
(3.43)

Note that the value of the function is a third-order object, but its definition is again
essentially second-order. To define factor set for Cσext

i
, consider C∩nσext

i
where for each j ̸=

i, σj is ∇Dj . To represent an element H ′ we define a string function rep(H ′,RΘ, C∩nσext
i

):

H = rep(H ′,RΘ, C∩nσext
i

) ⇐⇒ C∩nσext
i

(H,H ′) ∧ factorset(RΘ, C∩nσext
i

)(H). (3.44)

Finally, we define third-order valued function factorω:

factorω(RΘ,FΩ, C∩nσext
i

)(B) = FΩ/∩nσext
i

(B) ⇐⇒ ∃H1...∃Hm ∈ RΘ/C∩nσext
i
,

∃H ∈ RΘ/C∩nσext
i
, B = ⟨H1, ...,Hm, H⟩∧

∧∃H ′
1...∃H ′

m∃H ′ ∈ RΘ ∧H = rep(H ′,RΘ, Cσext
i

) ∧
⋀︂
i<m

Hi = rep(H ′
i/σ,D, σ)∧

FΩ/σ0,...,Ω/σn−1(H1, ...,Hm, H).

(3.45)

As a factor algebra we consider a pair of classes (RΘ/C∩nσext
i
,FΩ/∩nσext

i
).

Now, to define a factor set for the general third-order subalgebra R and the congruence
relation Cσ, we need to choose a representant of a congruence block. It can be done by
choosing the minimum string (in the sense of (3.4)) that represents maps from the block.
The rest are defined analogously.

3.2.5 Homomorphism and isomorphism between second and third order
objects

We say that there exists a homomorphism between two subalgebras (B,ΩB), (C,ΩC) of
algebra A if

HOMalg(B,ΩB, C,ΩC) ⇐⇒ ∃H < ⟨l, l⟩,MAP (B, l, C, l,H)∧
∧∀b1, ..., bm, b ∈ B,ΩB(b1, ..., bm, b)↔ ΩC(H(b1), ...,H(bm), H(b)).

(3.46)

The image and kernel of B under H can be returned by string-valued functions defined as
follows:

img(B,H)(i) ⇐⇒ i ∈ C ∧ ∃j ∈ B, H(j) = i,

ker(H)(i, j) ⇐⇒ i, j ∈ B ∧H(i) = H(j).
(3.47)

We can easily formalize embedding, epimorphism, and isomorphism:

ISOalg(B,ΩB, C,ΩC) ⇐⇒ ∃H < ⟨l, n⟩, HOMalg(B,ΩB, C,ΩC)∧
∧∀i1, i2 ∈ B, (H(i1) = H(i2)→ i1 = i2) ∧ ∀j ∈ C,∃i ∈ B,H(i) = j.

(3.48)
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Now, we define a relation of being isomorphic between third-order objects and second-
order objects. This relation assumes the existence of the third-order object – a class of
maps. We say that M is a well-defined map between a class R and a set D if

MAP 3,2(R, D,M) ⇐⇒ ∀H ∈ R∃a ∈ D, M(H, a)∧
∀H ∈ R∀a, b ∈ D (M(H, a) ∧M(H, b)→ a = b).

(3.49)

We say that H is a homomorphism from a class (R,F) to an algebra (D,Ω) if

HOM3,2
alg (R,F, D,Ω,H) ⇐⇒ MAP 3,2(R, D,H)∧

∧∀H1, ...,Hm, H ∈ R,F(H1, ...,Hm, H)↔ Ω(M(H1), ...,M(Hm),M(H)),
(3.50)

and that the class (R,F) is isomorphic to the set (D,Ω) if

ISO3,2
alg(R,F, D,Ω) ⇐⇒ ∃H, HOM3,2(R,F, D,Ω,H) ∧ ∀H1, H2 ∈ R,

(H(H1) = H(H2)→ H1 = H2) ∧ ∀a ∈ D,∃H ∈ R,H(H) = a.
(3.51)

Analogously, we can define a map MAP 2,3, a homomorphism HOM2,3
alg , and an isomor-

phism ISO2,3
alg from a set to a class. Finally, we define an isomorphism between third-order

objects. We say that M is a well-defined map between a class R and a class R′ if

MAP 3,3(R,R′,M) ⇐⇒ ∀H ∈ R∃H ′ ∈ R, M(H,H ′)∧
∀H ∈ R∀H1, H2 ∈ R′ (M(H,H1) ∧M(H,H2)→ H1 = H2).

(3.52)

We say that H is a homomorphism from a class (R,F) to a class (R′,F′) if

HOM3,3
alg (R,F,R′,F′,H) ⇐⇒ MAP 3,3(R,R′,H)∧

∧∀H1, ...,Hm, H ∈ R,F(H1, ...,Hm, H)↔ F′(M(H1), ...,M(Hm),M(H)),
(3.53)

and, finally,

ISO3,3
alg(R,F,R

′,F′) ⇐⇒ ∃H, HOM3,3(R,F,R′,F′,H) ∧ ∀H1, H2 ∈ R,

(H(H1) = H(H2)→ H1 = H2) ∧ ∀H ′ ∈ R′, ∃H ∈ R,H(H) = H ′.
(3.54)

For every domain Di and any of its subuniverse Bi, we define its extension Bext
i to

third-order object, as a set of maps from [n] to [D0, ..., Dn−1] such that it contains all
maps sending i to elements of Bi:

Bext
i (H) ⇐⇒ ∃ai ∈ Bi, H(i) = ⟨i, ai⟩. (3.55)

3.2.6 Auxiliary definitions from Zhuk’s algorithm

Some notions, which were used in Zhuk’s algorithm mainly in relation to constraints, we
will give both for binary relations and n-ary relations.

3.2.6.1 Crucial Instance

For an instance Θ a constraint C is called crucial in D(⊥) = (D(⊥)
0 , ..., D

(⊥)
n−1), where

D
(⊥)
i ⊆ Di for each i, if it does not have dummy variables, Θ has no solutions in D(⊥),

but the replacement of C by all weaker constraints gives an instance with a solution in
D(⊥). A CSP instance Θ is crucial in D(⊥) if every constraint of Θ is crucial in D(⊥). In
this section we will formalize this notion.
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Definition 51 (Reduction of the domain set). For an instance Θ = (X , Ä) with domain
set D = (D0, ..., Dn−1) we say that a set D(⊥) = (D(⊥)

0 , ..., D
(⊥)
n−1) is a reduction of D if

D
(⊥)
i is a subuniverse of Di for every i.

Red(D(⊥), D) ⇐⇒ ∀i ≤ n, subTA(D(⊥)
i , Di). (3.56)

In the definition, we can additionally require that equal domains be reduced to equal
domains, i.e.

∀i∀j, Di = Dj → D
(⊥)
i = D

(⊥)
j . (3.57)

We shall use it later considering different modifications of the instance to avoid abuse of
the notation.

Definition 52 (Instance after reduction). For an instance Θ = (X , Ä), we need to define
an instance Θ(⊥) = (X (⊥), Ä(⊥)) after the reduction of a domain set of a target digraph
Ä = (VÄ, EÄ) from D = (D0, ..., Dn−1) to D(⊥) = (D(⊥)

0 , ..., D
(⊥)
n−1). Since there is a unique

way to construct a reduction of an instance, we actually can define a string function (using
a bit-defining axiom) that returns a reduced instance:

redinst(Θ, D(⊥))(X (⊥), Ä(⊥)) = Θ(⊥)(X (⊥), Ä(⊥)) ⇐⇒ Red(D(⊥), D)∧
∧(X (⊥) = X )∧

∧(∀i, j < n, ∀a, b < l, Eij
Ä(⊥)(a, b)↔ EijÄ(a, b) ∧ a ∈ D(⊥)

i ∧ b ∈ D(⊥)
j ).

(3.58)

We say that D(⊥) is a 1-consistent reduction if the instance Θ(⊥) is 1-consistent, 1C(Θ(⊥)).

Definition 53 (Linked component). Sometimes when we work with a non-linked instance,
we need to produce its linked component, i.e. elements that can be connected by a path
in the instance. Recall that two elements a ∈ Di, b ∈ Dj are linked, if there exists a
path Pt of some length t connecting i, j with homomorphism H such that there exists a
homomorphism H ′ from Pt to Ä sending 0 to ⟨i, a⟩ and t to ⟨j, b⟩, and for every element
p < t, H(p) = k implies that H(p) = ⟨k, c⟩ for some c ∈ Dk. We can express it by a
Σ1,b

1 -formula,
∃Pt < (nl, 4(nl)2), Linked(a, b, i, j,Θ,Pt).

We have formalized in Chapter 2 (ref. [6]) that Linked(a, b, i, i,Θ) is a congruence relation
on Di, and that for a non-fragmented instance, this congruence provides a partition into
linked components. That is, each linked component can be viewed as the same CSP
instance on smaller domains. We define a string function linkcomp(Θ, Di, a) that produces
a linked reduction of the domain set based on an element a in the domain Di.

linkcomp(Θ, Di, a)(j, b) = V link,i,a

Ä (j, b) ⇐⇒ ∃Pt < (nl, 4(nl)2),
Linked(a, b, i, j,Θ,Pt).

(3.59)

Then a Σ1,b
1 -function

redinst(Θ, linkcomp(Θ, Di, a))

produces a linked reduction of instance Θ, containing the element a in the domain Di.
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Definition 54 (Dummy variable). A variable xi of an edge (xi, xj) ∈ EX is dummy if
for every b ∈ Dj such that there exists a ∈ Di, EijÄ(a, b), there is an edge (a′, b) ∈ EijÄ for
every a′ ∈ Di.

Dum2(EijÄ , i) ⇐⇒ ∀b ∈ Dj , (∃a ∈ Di, E
ij

Ä(a, b)→ ∀a′ ∈ Di, E
ij

Ä(a′, b)). (3.60)

Note that for a 1-consistent CSP instance this means that EijÄ is a full relation:

FullRel(EijÄ) ⇐⇒ ∀a ∈ Di,∀b ∈ Dj , E
ij

Ä(a, b). (3.61)

We also introduce the notion of being a dummy variable for a solution set RΘ. We say
that a variable xi is dummy if the following Π1,b

2 -relation holds:

Dum(RΘ, i) ⇐⇒ ∀H ≤ ⟨n, ⟨n, l⟩⟩, (HOM¨ (X , Ä, H)→ ∀a ∈ Di,

∃H ′ ≤ ⟨n, ⟨n, l⟩⟩, HOM¨ (X , Ä, H ′) ∧H ′(i) = ⟨i, a⟩ ∧ ∀j ̸= i < n, H ′(j) = H(j)).
(3.62)

Definition 55 (Weakening of a constraint). For a binary constraint EijÄ we have only two
types of weaker constraints: domains Di, Dj which are weaker constraints of less arity
(which we never increase), and all binary constraints from the list ΓA containing EijÄ ,
including the full relation on Di ×Dj (as if we remove a constraint at all). We say that
E is a weaker constraint than EijÄ if

Weaker(E,EijÄ) ⇐⇒ Polm,2(Ω, A,E) ∧ (∀a, b < l, E(a, b)→
→ a ∈ Di ∧ b ∈ Dj) ∧

[︁
FullRel(E)∨

∨
(︁
(∀a ∈ Di,∀b ∈ Dj , E

ij

Ä(a, b)→ E(a, b)) ∧ (∃a ∈ Di,

∃b ∈ Dj , E(a, b) ∧ ¬EijÄ(a, b))
)︁]︁
.

(3.63)

Note that for any constraint EijÄ there exists at least one weaker constraint (namely the full
relation). Any time we weaken a constraint EijÄ we replace it with all weaker constraints
simultaneously. That is, we consider an intersection of all weaker constraints. But since
in the list ΓA we have all pp-definable binary relations invariant under Ω, there exists
k < 2l2 such that Γ2

A,k is that intersection. A problem here arises when the intersection of
all weaker constraints of a constraint is the constraint itself: it just means that there are
several incomparable intersections of weaker constraints. In this case, we can choose one
of them arbitrarily, and we will choose the one with the smallest k < 2l2 . We first define
a string function that returns the list of such intersections:

weakerlist(EijÄ)(k) ⇐⇒ Weaker(Γ2
A,k, E

ij

Ä) ∧ ∀g ̸= k < 2l2 ,

¬(Weaker(Γ2
A,g, E

ij

Ä) ∧Weaker(Γ2
A,k,Γ2

A,g)).
(3.64)

Then we define a string function that returns the first intersection from this list. We will
call it the weakening of the constraint EijÄ and denote by EijÄ,w:

weakening(EijÄ)(a, b) = EijÄ,w(a, b) ⇐⇒ ∃i < 2l2 , (weakerlist(EijÄ)(i)∧

∧Γ2
A,i(a, b)) ∧ ∀j < i, ¬weakerlist(EijÄ)(j).

(3.65)

The function is well-defined due to the Number Minimization axiom Σ1,b
0 -MIN (see

Chapter 2, ref. [6]) and since weakerlist(EijÄ) is never empty. Thus, we can uniquely
define the instance after weakening of a constraint EijÄ :
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Definition 56 (Instance after weakening). For an instance Θ = (X , Ä), the instance
Θwij = (Xwij , Äwij ) after the weakening of a constraint EijÄ is defined by the following
string function:

weakinst(Θ, EijÄ)(Xwij , Äwij ) = Θwij (Xwij , Äwij ) ⇐⇒ (Dwji = D)∧
∧(VX

wij = VX ) ∧ (∀t ̸= i < n,∀r ̸= j < n, (EX
wij (t, r)↔ EX (t, r))∧

∧(EtrÄ
wij

= EtrÄ ))∧

∧EijÄ
wij

= weakening(EijÄ) ∧ (FullRel(EijÄ
wij

)↔ ¬EX (i, j)).

(3.66)

Note that the last line ensures that if the only weaker binary relation to EijÄ is a full
relation, then we remove an edge from X .

Definition 57 (Crucial instance). Let D(⊥)
i ⊆ Di for every i, and let D(⊥) be a reduction

of D. A constraint EijÄ of instance Θ is called crucial in D(⊥) if

CrucConst(EijÄ ,Θ, D
(⊥)) ⇐⇒ ¬Dum2(EijÄ , i) ∧ ¬Dum2(EijÄ , j)∧

¬HOM¨ (X (⊥), Ä(⊥)) ∧HOM¨ (X (⊥)
wij , Ä

(⊥)
wij ).

(3.67)

We say that a CSP instance Θ = (X , Ä) is crucial in D(⊥) if

CrucInst(Θ, D(⊥)) ⇐⇒ ∀j, i < n,EX (i, j)→ CrucConst(EijÄ ,Θ, D
(⊥)). (3.68)

Note that all formulas used in the definitions of this section except Definition 57, are
Σ1,b

0 . Formulas (3.67) and (3.68) are from the class B(Σ1,b
1 ), Boolean combinations of

Σ1,b
1 -formulas.

3.2.6.2 Covering and expanded covering

We can consider a CSP instance Θ on n variables as a set of constraints of the form EijÄ
for all i, j < n (we do not consider domains here as constraints).

Definition 58 (Tree-instance). We say that an instance Θ is a tree-formula if there is no
path z1 − C1 − z2 − ... − zl−1 − Cl − zl such that l ≤ 3, z1 = zl, and all the constraints
C1, C2, ..., Cl are different. Since in our setting for any i, j < n we suppose that there is
only one constraint relation EijÄ (we can do this because we have any intersection of any
invariant relations in our list ΓA), an instance Θ = (X , Ä) is a tree-formula if it does not
contain cycles. It can be expressed by the following Π1,b

1 -formula:

TreeInst(X , Ä) ⇐⇒ ∀t < n2, ∀VCt = t,∀ECt ≤ 4t2,∀H < ⟨t, n⟩,
CY CLE(VCt , ECt) ∧HOM(Ct,X , H)→ ∃i1 ̸= j1 < t,∃i2 ̸= j2 < t,∃k1, k2 < n,

ECt(i1, i2) ∧ ECt(j1, j2) ∧H(i1, k1) ∧H(i2, k2) ∧H(j1, k1) ∧H(j2, k2).
(3.69)

That is, for any cycle Ct, any homomorphism from Ct to X must glue at least two different
edges of Ct.

Definition 59 (Subinstance). For instance Θ = (X , Ä) we call Θ′ = (X ′, Ä) a subinstance
of Θ if Θ′ is a subset of the variables together with some subset of constraints from Θ that
only involve these variables, i.e.:

subInst(Θ′,Θ) ⇐⇒ Ä′ = Ä ∧ VX ′ ⊆ VX ∧ EX ′ ⊆ EX∧
(EX ′(x1, x2)→ x1, x2 ∈ VX ′).

(3.70)
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That is, the target digraph with domains Ä does not change, the set of vertices VX ′ is a
subset of VX , and the set of constraints EX ′ is a subset of EX defined only on VX ′ . The
solution to such a subinstance is a partial homomorphism.

Consider instance Θ as a set of constraints {EijÄ : i, j < n}. Then consider a subset Θ′

of such constraints, a subinstance of Θ. We need to define uniquely a subinstance Θ\Θ′

as a string function:

dif(Θ,Θ′)(XΘ\Θ′ , ÄΘ\Θ′) = Θ\Θ′(XΘ\Θ′ , ÄΘ\Θ′) ⇐⇒ ÄΘ\Θ′ = Ä∧
∧∀i, j < n, EX \X ′(i, j)↔ EX (i, j) ∧ ¬EX ′(i, j)∧

∧VX \X ′ ⊆ VX ∧ (∀i < n, VX \X ′(i)↔ ∃j < n, ¬EX ′(i, j) ∧ ¬EX ′(i, j)∧
∧(EX (i, j) ∨ EX (i, j)).

(3.71)

Note that Θ′ and Θ\Θ′ can share common variables, so the third line in the formula places
to VX \X ′ only variables that are involved in some constraint not in Θ′. We also lose all
the variables that are not involved in any constraint, neither in Θ′ nor in Θ.

For the rest part of this section and sometimes further when we talk about (expanded)
covering and substitutions, we will use labels for vertex sets instead of elements. For
any instance Θ with a vertex set VX we can introduce as many labels as we want using
two-dimensional strings Y, Z,W , and the function seq(i, Y ) = yi. They are bounded on
the first coordinate by the number of vertices and on the second coordinate by some
reasonable number of labels. Let us denote this bound for n variables by bn. We will use
yi, zj , wk < bn in the formulas when appropriate. When we write ∀i < n, R(yi), this is an
abbreviation for

∀i < n, R(seq(i, Y )).

The representation of the entire vertex set for a digraph X is VX (i, xi), and the represen-
tation of the set of vertices of a digraph Ä is V (⟨seq(i, VX ), a⟩), which does not differ much
from our usual representations. For an instance Λ and two sets of variables z1, ..., zk and
y1, ..., yk by Λy1,...,yk

z1,...,zk
we denote the instance obtained from instance Λ by replacing every

variable zi by yi. This can be expressed by a Σ1,b
0 string function

substitute(Λ, Y, Z)(XΛy1,...,yk
z1,...,zk

, ÄΛy1,...,yk
z1,...,zk

) = Λy1,...,yk
z1,...,zk

(XΛy1,...,yk
z1,...,zk

, ÄΛy1,...,yk
z1,...,zk

),

which definition is rather tedious than interesting, so we do not present it here. We also
need to define a union of two sets of constraints, i.e. a union of two instances ΘX = (X , Ä)
with x0, ...xn−1 variables, Ä = (VÄ, EÄ), and ΘY = (Y, B̈) with y0, ..., ym−1 variables,
B̈ = (VB̈, EB̈). The problem here is that they can share common variables (that are
labeled by the same number). To be safe and to easily track the number of variables, we
just copy the common variables xi, yj , and set Exiyj

Ä∪B̈ to be equality relation (we have it
since in our list ΓA we have all relations pp-definable from Γ). To copy variables without
collisions, we first define a number function.

maxlabel(VX ) = s ⇐⇒ ∀i < n, seq(i, VX ) ≤ s ∧ ∃i < n, seq(i, VX ) = s, (3.72)

and use a label zi = yi +maxlabel(VX ) for every i < m in the following definition. Then
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we define a string function uni on two arguments by its bit-definition:

uni(ΘX ,ΘY)(X ∪ Y, Ä ∪ B̈) = ΘX ∪ΘY(X ∪ Y, Ä ∪ B̈) ⇐⇒
∀i < n, VX ∪Y(i, xi) ∧ ∀i < m, VX ∪Y(n+ i, zi)∧

∧∀i, j < n, EX ∪Y(xi, xj)↔ EX (xi, xj) ∧ ∀i, j < m, EX ∪Y(zi, zj)↔ EY(yi, yj)∧
∧∀i < n,∀a < l, VÄ∪B̈(xi, a)↔ VÄ(xi, a)∧
∧∀i < m,∀a < l, VÄ∪B̈(zi, a)↔ VB̈(yi, a)∧

∧∀i, j < n, ∀a, b < l, E
xixj

Ä∪B̈(a, b)↔ E
xixj

Ä (a, b)∧
∧∀i, j < m, ∀a, b < l, E

zizj

Ä∪B̈(a, b)↔ E
yiyj

B̈ (a, b)∧
∧∀i < n∀j < m, xi = yj → ∀a ∈ Dxi , E

xizj

Ä∪B̈(a, a).

(3.73)

Due to this definition, function uni is not commutative, but ΘX ∪ ΘY and ΘY ∪ ΘX are
obviously isomorphic. We can iteratively define ΘX1 ∪ΘX2 ∪ ...∪ΘXn = (ΘX1 ∪ΘX2 ∪ ...∪
ΘXn−1) ∪ΘXn .

A pp-formula ∃y0, ..., yk−1Θ′(x0, ..., xn−1), where y0, ..., yk−1 are the only variables oc-
curring in Θ′ except x0, ..., xn−1, is called a subconstraint of Θ if Θ′ ⊆ Θ and Θ′ and Θ\Θ′

do not have common variables except for x0, ..., xn−1. We can consider Θ′ as a subin-
stance that involves variables x0, ..., xn−1, y0, ..., yk−1, and Θ as an instance on variables
x0, ..., xn−1, y0, ..., yk−1, z0, ..., zs−1. Constraints involving variables y0, ..., yk−1 occur only
in Θ′, and constraints involving z0, ..., zs−1 occur only in Θ\Θ′. We code common variables
by a set X. Then we can define a subconstraint in the following way:

subConst(Θ,Θ′, X) ⇐⇒ subInst(Θ′,Θ) ∧ ∀i, j, k < (n+ k + s),
EX ′(i, j) ∧ EX \X ′(j, k)→ ∃s < (n+ k + s), j = X(s, xs).

(3.74)

Here, for brevity’s sake, we abbreviate by EX (i, j) ∧ EX \X ′(j, k) all four combinations
of non-symmetric constraints. Then ∃y0, ..., yk−1Θ′(x0, ..., xn−1) defines a projection of
solution set to CSP instance Θ′ on the coordinates x0, ..., xn−1, R

x0,...,xn−1
Θ′ .

Definition 60 (Covering and Expanded covering). For an instance ΘX = (X , Ä) with
x0, ...xn−1 variables, Ä = (VÄ, EÄ), we say that an instance ΘY = (Y, B̈) with y0, ..., ym−1
variables and B̈ = (VB̈, EB̈) is a covering of Θ if the following Σ1,b

1 -relation holds:

Cov(ΘY ,ΘX ) ⇐⇒ ∃H < ⟨bm, bn⟩, HOM(Y,X )∧
∧∀i < m, H(yi) = xj → Dyi = Dxj∧

∧∀i, j < m, EY(yi, yj) ∧H(yi) = xk ∧H(yj) = xp → ∀a ∈ Dyi ,∀b ∈ Dyj ,

E
yiyj

B̈ (a, b)↔ E
xkxp

Ä (a, b) ∧ ∀i < m,∀j < n, yi = xj → H(yj) = xi.

(3.75)

That is, for our purpose, a covering is another instance with different X ′ and A′¨ such that

1. The domain of every variable yi in ΘY is equal to the domain of H(yi) in ΘX .

2. There is a homomorphism from Y to X (for any constraint (yi, yj ;EB̈)) of ΘY ,
(H(yi), H(yj);EÄ) is a constraint of ΘX such that EÄ and EB̈ here are the same
relation but for different variables.

3. If a variable y appears in both ΘX and ΘY , we just assume that H(y) = y.
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We say that ΘY is an expanded covering if

ExpCov(ΘY ,ΘX ) ⇐⇒ ∃H < ⟨bm, bn⟩, HOM(Y,X )∧
∧∀i < n, H(yi) = xj → Dyi = Dxj ∧ ∀i, j < m,(︁

(EY(yi, yj) ∧H(yi) = xk ̸= H(yj) = xp →
→ (∀a ∈ Dxk

,∀b ∈ Dxp , E
xkxp

Ä (a, b)→ E
yiyj

B̈ (a, b)))∧
∧((EY(yi, yj) ∧H(yi) = H(yj) = xk → ∀a ∈ Dyi , E

yiyj

B̈ (a, a))
)︁
.

(3.76)

That is, for our purpose, an expanded covering is another instance with different X ′ and
A′¨ such that:

1. The domain of every variable yi in ΘY is equal to the domain of H(yi) in ΘX .

2. There is a homomorphism from Y to X , but in this case:

• X can ’have loops’. When H(yi) = H(yj), then we need for any a in Dyi = Dyj ,
(a, a) ∈ EB̈;

• When H(yi) ̸= H(yj), then EX (H(yi), H(yj)) is an edge but Eyiyj

B̈ is weaker or
equivalent to EH(yi),H(yj)

Ä (in our case it is always a richer relation of the same
arity, more edges between Dyi , Dyj in ΘY than between DH(yi), DH(yj)) in ΘX .

3. If a variable y appears in both ΘX and ΘY , we just assume that H(y) = y.

Then it is obvious that:

1. Any time we replace some constraints with weaker constraints, we get an expanded
covering of the original instance: we remove some edges from X and add some edges
to Ä.

2. Any solution to the original instance can be naturally expanded to a solution to
a covering (expanded covering): consider a homomorphism H from X to Ä, and
a homomorphism H ′ from Y to X and then construct H ◦ H ′ (and it will be a
homomorphism from Y to B̈).

3. The union (union of all constraints) of two coverings (expanded coverings) is also a
covering (expanded covering): consider digraphs Y1 ∪ Y2 and B̈1 ∪ B̈2.

4. A covering (expanded covering) of a covering (expanded covering) is a covering
(expanded covering): consider a superposition of homomorphism.

5. Suppose ΘY is a covering (expanded covering) of a 1-consistent instance and ΘY is
a tree formula. Then the solution set to ΘY is subdirect (there are no cycles in Y).

The following lemma can be easily proved (see [15]).

Lemma 25 (Lemma 6.1, [15]). Suppose ΘX is a cycle-consistent irreducible CSP instance
and ΘY is an expanded covering. Then ΘY is cycle-consistent and irreducible.
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3.2.6.3 Relations and properties

A binary relation R is called critical if it cannot be represented as an intersection of other
binary relations on Di ×Dj and it has no dummy variables. Since in our list ΓA there is
any invariant binary relation on Di ×Dj , we define Critical2(R) as follows:

Critical2(R) ⇐⇒ ¬Dum2(R, i) ∧ ¬Dum2(R, j) ∧ ∃a ∈ Di, ∃b ∈ Dj , ∀k < 2l2 ,
R ⊊ Γ2

A,k → (Γ2
A,k(a, b) ∧ ¬R(a, b)).

(3.77)

For a critical binary relation R, the minimal relation R′ such that R ⊊ R′ is called the
cover of R:

Cover2(R′, R) ⇐⇒ Critical2(R) ∧R′ = weakening(R). (3.78)
Further notions we will consider in connection to both binary and n-ary relations, so we
will define them both for constraints and solution sets RΘ. We use constant subscripts
to highlight the difference between the definitions, but we do not use n in subscripts for
higher arity since the definitions do not depend on variable n. For a congruence σ on Di

we say that the ith variable of a unary relation E ≤ Di and a binary relation R ≤ Di×Dj

is stable under σ if
Stable1(E, σ) ⇐⇒ ∀a, a′ ∈ Di, E(a) ∧ σ(a, a′)→ E(a′);

Stable2(R, i, σ) ⇐⇒ ∀a, a′ ∈ Di, ∀b ∈ Dj , R(a, b) ∧ σ(a, a′)→ R(a′, b).
(3.79)

Remark 6. Note that a unary relation E stable under some congruence σ on D is just
a union of that congruence blocks, it does not have to be a subuniverse of D. A binary
relation R such that both its variables on D are stable under σ is a full relation between
some set of congruence blocks on the first variable and some (not necessarily the same)
set of congruence blocks on the second variable. A congruence σ ⊆ D×D is stable under
itself, in the sense that all elements from one congruence block on the first coordinate are
connected with all elements from the same block on the second coordinate.

We say that the ith variable of the solution set RΘ ≤ D0 × ...×Dn−1 is stable under
congruence σ on Di if

Stable(RΘ, i, σ) ⇐⇒ ∀H,H ′ ≤ ⟨n, ⟨n, l⟩⟩, ∀ai, a′
i ∈ Di,

(︁
σ(ai, a′

i) ∧ (∀j ̸= i,

H(j) = H ′(j)) ∧H(i) = ⟨i, ai⟩ ∧H ′(i) = ⟨i, a′
i⟩ ∧HOM¨ (X , Ä, H)

)︁
→

→ HOM¨ (X , Ä, H ′).
(3.80)

Note that this is Π1,b
1 -formula. If every variable of R or RΘ is stable under σ we say

that R or RΘ is stable under σ and write Stable(RΘ, σ). We say that a binary relation
R ≤ Di ×Dj has a parallelogram property if

ParlPr2(R) ⇐⇒ ∀a, c ∈ Di,∀b, d ∈ Dj , R(a, b) ∧R(c, b) ∧R(c, d)→ R(a, d). (3.81)
A relation has the parallelogram property if any way of grouping its coordinates into two
groups gives a binary relation with the parallelogram property. That is, we say that a
solution set RΘ ≤ D0 × ...×Dn−1 to some CSP instance Θ has a parallelogram property
if the following Π1,b

2 -relation holds:
ParlPr(RΘ) ⇐⇒ ∀V1, V2 < n, (∀i < n, V1(i)↔ ¬V2(i))∧

∧∀H1, H2, H3 ≤ ⟨n, ⟨n, l⟩⟩,(︁
HOM¨ (X , Ä, H1) ∧HOM¨ (X , Ä, H2) ∧HOM¨ (X , Ä, H3)∧
∧(∀i ∈ V1, H3(i) = H2(i) ∧ ∀j ∈ V2, H3(j) = H1(j))

)︁
→

→ ∃H4 ≤ ⟨i, ⟨i, a⟩⟩, HOM¨ (X , Ä, H4)∧
∧(∀i ∈ V1, H4(i) = H1(i) ∧ ∀j ∈ V2, H4(j) = H2(j)).

(3.82)
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For a binary relation R ≤ Di ×Dj by Con(R,i)
2 we denote the following relation:

Con
(R,i)
2 (a, a′) ⇐⇒ ∃b ∈ Dj , R(a, b) ∧R(a′, b)

Con
(R,j)
2 (b, b′) ⇐⇒ ∃a ∈ Di, R(a, b) ∧R(a, b′).

(3.83)

For a constraint C = (xi, xj ;R) we will denote Con(R,i)
2 by Con(C,i)

2 . For a set of constraints
Θ we denote by Con(Θ,i)

2 the set of all Con(C,i)
2 . In the case of a CSP instance Θ, for any

i < n this set is of the form

∀j < n,∀a, b < l, Con
(Θ,i)
2 (0, j, a, b) ⇐⇒ EX (i, j) ∧ Con(EX (i,j),i)

2 (a, b),

∀j < n,∀a, b < l, Con
(Θ,i)
2 (j, 0, a, b) ⇐⇒ EX (j, i) ∧ Con(EX (j,i),i)

2 (a, b).
(3.84)

and its size is bounded by ⟨n, n, l, l⟩. We say that the ith variable of the binary relation
R is rectangular if

RectPr2(R, i) ⇐⇒ ∀a, a′ ∈ Di, ∀b ∈ Dj ,

(Con(R,i)
2 (a, a′) ∧R(a, b)→ R(a′, b)).

(3.85)

For a solution set RΘ ≤ D0× ...×Dn−1 to some CSP instance Θ by Con([RΘ],i) we define
the binary relation

Con([RΘ],i)(a, a′) ⇐⇒ ∃H1, H2 ≤ ⟨n, ⟨n, l⟩⟩, H1(i) = a ∧H2(i) = a′∧
∧∀j ̸= i < n, H1(j) = H2(j) ∧HOM¨ (X , Ä, H1) ∧HOM¨ (X , Ä, H2).

(3.86)

We say that the ith variable of the solution set R is rectangular if

RectPr(RΘ, i) ⇐⇒ ∀a, a′ ∈ Di, ∀H1 ≤ ⟨n, ⟨n, l⟩⟩,
HOM¨ (X , Ä, H1) ∧H1(i) = ⟨i, a⟩ ∧ Con([RΘ],i)

n (a, a′)→ ∃H2 ≤ ⟨n, ⟨n, l⟩⟩,
HOM¨ (X , Ä, H2) ∧H2(i) = ⟨i, a′⟩ ∧ (∀j ̸= i < n, H1(j) = H2(j)).

(3.87)

Finally, we say that the solution set RΘ to Θ is rectangular if all its variables are rectan-
gular:

RectInst(RΘ) ⇐⇒ ∀i < n, RectPr(RΘ, i). (3.88)

Note that RectPr(RΘ, i) is Σ1,b
2 -formula.

Remark 7. Note that the parallelogram property implies rectangularity, and if ith coordi-
nate of the relation R is rectangular, then Con([RΘ],i) is a congruence.

A binary relation R ≤ Di × Dj is called essential if it cannot be represented as a
conjunction of relations with smaller arities. A pair (ai, aj) ∈ Di ×Dj is called essential
for R if

EssPair(ai, aj , R) ⇐⇒ ¬R(ai, aj) ∧ ∃bi ∈ Di,∃bj ∈ Dj ,

R(ai, bj) ∧R(bi, aj).
(3.89)

It is known [14] that for a relation R being an essential is equivalent to having an essential
pair. Thus, we can define an essential binary relation R as follows:

EssRel2(R) ⇐⇒ ∃ai ∈ Di,∃aj ∈ Dj , EssPair(ai, aj , R). (3.90)

For a solution set RΘ we define an essential tuple by the following Σ1,b
1 -formula:

EssTuple(H,RΘ) ⇐⇒ ¬HOM¨ (X , Ä, H) ∧ ∀i < n,∃b < l, ∃H ′ ≤ ⟨n, ⟨n, l⟩⟩,
HOM¨ (X , Ä, H ′) ∧H ′(i) = ⟨i, b⟩ ∧ ∀j ̸= i < n, H ′(j) = H(j).

(3.91)
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Thus, RΘ is essential if there exists an essential tuple.

EssRel(RΘ) ⇐⇒ ∃H ≤ ⟨n, ⟨n, l⟩⟩, EssTuple(H,RΘ). (3.92)

We say that a relation R ≤ D0×...×Dn−1 is (C0, ..., Cn−1)-essential if R∩(C0, ..., Cn−1) =
∅, but for every i ≤ k, R∩(C0, ..., Ci−1, Ai, Ci+1, ..., Cn−1) ̸= ∅. We can formalize the tuple
(C0, ..., Cn−1) as usual, by one set C(i, a) ⇐⇒ Ci(a).

EssRel(R, C) ⇐⇒ ¬(∃H ∈ R, ∀i < n,∃ci ∈ Ci, H(i) = ⟨i, ci⟩)∧
∀i < n,∃ai ∈ Di\Ci,∃H ∈ R, H(i) = ⟨i, ai⟩∧
∧∀j ̸= i, j < n, ∃cj ∈ Cj , H(j) = ⟨j, cj⟩.

(3.93)

This is ΣB
0 -formula, but if we restrict ourselves to solution sets, we get a Boolean combi-

nation of Σ1,b
1 and Π1,b

1 formulas.
Finally, to define a key relation, we first present a unary vector function that pre-

serves the relation. Suppose R ≤ A0 × ... × As−1 and define a tuple Ψ = (ψ0, ..., ψs−1),
where ψi : Ai → Ai, is called a unary-vector function. We say that ψ preserves R if
(ψ0(a0), ..., ψs−1(as−1)) ∈ R for every (a0, ..., as−1) ∈ R. We say that R is a key relation
if there exists a tuple (b0, ..., bs−1) /∈ R such that for any tuple (c0, ..., cs−1) /∈ R there
exists a vector function Ψ which preserves R and gives ψi(ci) = bi for any i < s. For
a binary relation R ≤ Di × Dj there is a pair of unary functions ψi, ψj , represented by
two-dimensional sets, such that:

V ecFun2(R,ψi, ψj) ⇐⇒ MAP (Di, l, Di, l, ψi) ∧MAP (Dj , l, Dj , l, ψj)∧
∧∀ai, bi ∈ Di,∀aj , bj ∈ Dj , R(ai, aj) ∧ ψi(ai, bi) ∧ ψj(aj , bj)→ R(bi, bj).

(3.94)

Obviously, both ψi, ψj are polymorphisms. We say that a binary relation R is a key relation
if there exists a tuple (bi, bj) /∈ R such that for every (ci, cj) /∈ R there exists a unary vector
function represented by sets ψi, ψj that preserves R and ψ(ci, bi) and ψj(cj , bj):

KeyRel2(R) ⇐⇒ ∃bi, bj < l, ∀ci, cj < l

¬R(bi, bj) ∧ ¬R(ci, cj)→
⋁︂

ψi,ψj<l2

V ecFun2(R,ψi, ψj) ∧ ψi(ci, bi) ∧ ψj(cj , bj). (3.95)

Note that already for binary relations it would be Σ1,b
1 -formula if we do not fix the algebra

A. But in our case, we can go through all possible endomorphisms on Di, Dj . For a
solution set RΘ ≤ D0 × ... × Dn−1 we can represent a unary vector function as a three-
dimensional set Ψ(i, a, b), where each Ψi represents a function from Di to Di. Consider
the following Π1,b

1 -formula:

V ecFun(RΘ,Ψ) ⇐⇒ ∀i < n, MAP (Di, l, Di, l,Ψi)∧
∧∀H,H ′ ≤ ⟨n, ⟨n, l⟩⟩, HOM¨ (X , Ä, H)∧

∧(∀i < n,∀ai, bi ∈ Di, H(i) = ⟨i, ai⟩ ∧Ψi(ai, bi)→ H ′(i) = ⟨i, bi⟩)→
→ HOM¨ (X , Ä, H ′).

(3.96)

Then for a solution set RΘ ≤ D0 × ...×Dn−1 we have the following Σ1,b
4 -formula:

KeyRel(RΘ) ⇐⇒ ∃H ≤ ⟨n, ⟨n, l⟩⟩, ∀H ′ ≤ ⟨n, ⟨n, l⟩⟩, ¬HOM¨ (X , Ä, H)∧
∧¬HOM¨ (X , Ä, H ′)→ ∃Ψ ≤ ⟨n, l, l⟩, V ecFun(RΘ,Ψ)∧

∧(∀i < n,∀ai, bi < l, H ′(i) = ⟨i, ai⟩ ∧Ψi(ai, bi)→ H(i) = ⟨i, bi⟩).
(3.97)
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3.2.6.4 Bridges and connectivity

Definition 61 (Irreducible congruence). We say that a congruence σ on Di is irreducible
if it is proper, and it cannot be represented as an intersection of other binary relations
stable under σ.

irCongm(σ,Di) ⇐⇒ pCongm(Di,Ω, σ) ∧ ∃a, b ∈ Di,∀j < 2l2 ,
σ ⊊ Γ2

D,j ∧ Stable2(Γ2
D,j , σ)→ (Γ2

D,j(a, b) ∧ ¬σ(a, b)).
(3.98)

We denote the set of all irreducible congruences on D by Σir
D. For an irreducible congruence

σ on set D by σ∗ is denoted the minimal binary relation σ ⊊ σ∗ stable under σ. We can
define a string function

·∗(σ)(a, b) = σ∗(a, b) ⇐⇒
⋁︂

σ′≤⟨l,l⟩
Stable2(σ′, σ) ∧ σ ⊊ σ′ ∧ ∀j < 2l2 ,

Stable2(Γ2
D,j , σ) ∧ σ ⊊ Γ2

D,j → σ′ ⊆ Γ2
D,j ∧ σ(a, b).

(3.99)

Remark 8. Any congruence σ′ containing σ is stable under σ, but a binary relation stable
under σ does not need to be a congruence.

Definition 62 (Bridge). For two domains Di, Dj and congruences on them σi, σj respec-
tively, we say that a 4-ary relation ρ ⊆ D2

i × D2
j is a bridge from σi to σj if the first

two variables of ρ are stable under σ1 and the last two variables of ρ are stable under σ2,
σ1 ⊊ pr1,2(ρ) and σ2 ⊊ pr3,4(ρ), and (a1, a2, a3, a4) ∈ ρ implies

(a1, a2) ∈ σ1 ⇐⇒ (a3, a4) ∈ σ2.

We can define it by Σ1,b
0 -formula:

Bridge(ρ, σi, σj) ⇐⇒ (∃a, a′ ∈ Di, ∃b, b′ ∈ Dj ,

pr1,2(ρ)(a, a′) ∧ ¬σi(a, a′) ∧ pr3,4(ρ)(b, b′) ∧ ¬σj(b, b′))∧
∧Stable2(ρ, 1, σi) ∧ Stable2(ρ, 2, σi) ∧ Stable2(ρ, 3, σj) ∧ Stable2(ρ, 4, σj)∧

∧(∀a, a′ ∈ Di, ∀b, b′ ∈ Dj , ρ(a, a′, b, b′)→ (σi(a, a′)↔ σj(b, b′))).

(3.100)

In words, the projection of ρ to the first two coordinates strictly contains σi and is a
full relation between some set of congruence blocks on the first coordinate and some set
of blocks on the second coordinate, and the same for the projection of ρ to the last two
coordinates, and the first two coordinates contain elements from one congruence block of
σi if and only if the last two coordinates also contain elements from one congruence block
of σj . A bridge ρ ⊆ D4 is called reflexive if (a, a, a, a) ∈ ρ for every a ∈ D. For a bridge ρ,
denote by ρ̃ the binary relation defined by ρ̃(x, y) = ρ(x, x, y, y), we define it as a string
function:

·̃(ρ)(x, y) = ρ̃(x, y) ⇐⇒ ρ(x, x, y, y). (3.101)

A reflexive bridge ρ from an irreducible congruence σi to an irreducible congruence σj is
called optimal if there is no a reflexive bridge ρ′ from σi to σj such that ρ̃ ⊊ ρ̃′, i.e. a
bridge that contains more congruence blocks than ρ.

OptBridge(ρ, σi, σj) ⇐⇒ irCongm(σi, D) ∧ irCongm(σj , D)∧
∧¬(

⋁︂
ρ′≤(4l)24

Bridge(ρ′, σi, σj) ∧ ∀a ∈ D, ρ′(a, a, a, a) ∧ ρ̃ ⊊ ρ̃′). (3.102)
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If ρ is optimal, then ρ̃ is a congruence. For an irreducible congruence σ, define a string
function opt as

opt(σ)(x, y) ⇐⇒
⋁︂

ρ≤(4l)24

OptBridge(ρ, σ, σ) ∧ ρ̃(x, y). (3.103)

It returns the congruence ρ̃ for an optimal bridge ρ from σ to σ, which is well-defined since
we can compose two reflexive bridges. For a set of irreducible congruences Σir

D, we define
a string function optset that returns the set of opt(σ) for all σ ∈ Σir

D:

optset(Σir
D)(i, a, b) ⇐⇒ Σir

D,i ̸= ∅ ∧ opt(Σir
D,i)(a, b). (3.104)

We say that two congruences σi, σj on a set D are adjacent if there exists a reflexive
bridge from σi to σj . Since we consider only finite and fixed set of binary constraints Γ2

A,
including the set of all congruences on A and all its subuniverses, we know in advance all
bridges for all congruences, the list denoted by Ξ:

Adj(σi, σj) ⇐⇒
⋁︂
ρ∈ Ξ

Bridge(ρ, σi, σj) ∧ ∀a ∈ D, ρ(a, a, a, a). (3.105)

Note that Adj(σi, σj) is Σ1,b
0 -formula. We say that two rectangular constraints C1, C2 are

adjacent in a common variable x if Con(C1,x)
2 and Con

(C2,x)
2 are adjacent. A formula is

called connected if every constraint in the formula is critical and rectangular, and the
graph, whose vertices are constraints and edges are adjacent constraints, is connected. To
define connectivity, recall that there is a path from i to j in the input digraph X if there
exists a path Pt of some length t that can be homomorphically mapped to X such that
H(0) = i and H(t) = j:

Path(i, j,X ) ⇐⇒ ∃t < n,∃VPt = t,∃EPt ≤ 4t2, PATH(VPt , EPt)∧
∧∃H ≤ ⟨t, n⟩, HOM(Pt,X , H) ∧ (H(0, i) ∧H(t, j)).

(3.106)

We short it as ∃Pt < ⟨n, 4n2⟩, Path(i, j,X ,Pt). For an instance Θ, we define the following
Σ1,b

1 -relation of being connected:

Connected(Θ) ⇐⇒ ∀i, j < n, EX (i, j)→ Critical2(EijÄ)∧

∧RectPr2(EijÄ , i) ∧RectPr2(EijÄ , j)∧
∧∀i, j, k, s < n, EX (i, j) ∧ EX (k, s)→ ∃Pt < ⟨n, 4n2⟩,∃H ≤ ⟨t, n⟩, PATH(VPt)∧

∧HOM(Pt,X , H) ∧ (H(0, i) ∧H(t, s))∧

∧∀p ≤ t− 2, Adj(Con(EX (H(p),H(p+1)),H(p+1))
2 , Con

(EX (H(p+1),H(p+2)),H(p+1))
2 ),

(3.107)
where by EX (H(p), H(p+ 1))) and EX (H(p+ 1), H(p+ 2)) we abbreviate all four combi-
nations of non-symmetric constraints.

3.2.7 One-of-four subuniverses

In this section we will define 4 different subuniverses for an algebra D = (D,Ω). For D
being a subuniverse for a fixed algebra A = (A,Ω), all these definitions are Σ1,b

0 -formulas.
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3.2.7.1 Binary absorption subuniverse

If B = (B,FB) is a subalgebra of D = (D,FD), then B absorbs D if there exists an n-ary
term operation f ∈ Clone(FD) such that f(a1, ..., an) ∈ B whenever the set of indices
{i : ai /∈ B} has at most one element. B binary absorbs D if there exists a binary term
operation f ∈ Clone(FD) such that f(a, b) ∈ B and f(b, a) ∈ B for any a ∈ D and b ∈ B.
Consider the algebra A = (A,Ω) and its subalgebra B = (B,Ω), where Ω is m-ary basic
operation. The corresponding relational structure to A isA = (A,ΓA), where ΓA is at most
binary part of a relational clone. Due to Galois correspondence, Clone(Ω) = Pol(ΓA).
Thus, for any binary term operation T over A the condition T ∈ Clone(Ω) can be encoded
as:

T ∈ Clone(Ω) ⇐⇒ Pol2(T,A,ΓA). (3.108)

For any three sets D,B, T the following Σ1,b
0 -definable relation indicates that the subset

B absorbs D with binary operation T .

BAsubS(B,D, T ) ⇐⇒ subS(B,D) ∧ ∀a ∈ D,∀b ∈ B, ∃c1, c2 ∈ B,
T (a, b) = c1 ∧ T (b, a) = c2.

(3.109)

If we want to define a subuniverse, then

BAsubU(B,D, T,Ω) ⇐⇒ SwNU(Ω, B) ∧ Pol2(T,D,ΓA)∧
∧BAsubS(B,D, T ).

(3.110)

Recall that a binary absorbing subuniverse can be trivial, i.e. B = D.

3.2.7.2 Central subuniverse

A subuniverse C of D is called central if it is an absorbing subuniverse and for every
a ∈ D\C we have (a, a) /∈ Sg({a} × C ∪ C × {a}). Every central subuniverse is a ternary
absorbing subuniverse.

To define a central subuniverse C of an algebra A = (A,Ω) we need to encode a set
Sg for the subset X = {{a}×C,C ×{a}} of A2 for any a ∈ A. Recall that Sg(X) can be
constructed by the closure operator

Cl(X) = X ∪ {Ω(a1, ..., am) : a1, ..., am ∈ X}
∀t ≥ 0, Cl0(X) = X,Clt+1(X) = Cl(Clt(X)).

(3.111)

Since A is finite of size l and |X| = 2|C|, we do not need more than (l2−2|C|) applications
of the closure operator Cl because at any application we either add to the set at least one
element or, after some t, Clt(X) = Clt+r(X) for any r. Not to depend on C, let us choose
the value l2. Thus, for any set X ≤ ⟨l, l⟩, we will iteratively define the following set Cll2X
up to l2:

∀b, c < l, Cl0X(b, c) ⇐⇒ X(b, c)∧
∧∀0 < t < l2,∀b, c < l, CltX(b, c) ⇐⇒ Clt−1

X (b, c)∨
∨∃b1, ..., bm, c1, ..., cm ∈ A,Clt−1

X (b1, c1) ∧ ... ∧ Clt−1
X (bm, cm)∧

∧Ω(b1, ..., bm) = b ∧ Ω(c1, ..., cm) = c.

(3.112)

The existence of this set follows from Σ1,b
1 -induction. A central subuniverse must be an

absorbing subuniverse, namely, a ternary absorbing subuniverse [16]. For any three sets
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D,C, S the following Σ1,b
0 -definable relation (D and C are bounded by l) expresses that

the subset C of D is central under ternary term operation S:

CRsubS(C,D, S) ⇐⇒ subS(C,D) ∧ ∀c1, c2 ∈ C,∀a ∈ D,∃c′
1, c

′
2, c

′
3 ∈ C,

S(c1, c2, a) = c′
1 ∧ S(c1, a, c2) = c′

2 ∧ S(a, c1, c2) = c′
3∧

∧
⋀︂

a∈D\C

⋀︂
X<⟨l,l⟩

((X(a, c) ∧X(c, a)↔ c ∈ C)→ ¬Cll2X(a, a)).
(3.113)

Note that for not fixed algebra B = (B,Ω), this relation is Π1,b
1 since the size of B would

not be bounded, and therefore we could not use large conjunction. If we want to define a
subuniverse, then

CRsubU(C,D, S,Ω) ⇐⇒ SwNU(Ω, C) ∧ Pol2(S,D,ΓA)∧
∧CRsubS(C,D, S).

(3.114)

Recall that a central subuniverse can be trivial, i.e. C = D.

3.2.7.3 PC subuniverse

We call an algebra D = (D,FD) polynomially complete (PC) if its polynomial clone is the
clone of all operations on D, O(D). Polynomially complete algebras are necessarily simple
[7], i.e. they have no non-trivial congruence relations. A classical result on polynomial
completeness is based on the following notion. The ternary discriminator function is the
function t defined by the identities

t(x, y, z) =
{︄
z, x = y,

x, x ̸= y.

Then Theorem 29 gives a necessary and sufficient condition of polynomial completeness.

Theorem 29 ([2]). A finite algebra is polynomially complete if and only if it has the
ternary discriminator as a polynomial operation.

The clone of all polynomials over D, Polynom(D) is defined as the clone generated by
Ω and all constants on D, i.e. nullary operations:

Polynom(D) = Clone(Ω, a1, ..., a|D|). (3.115)

Constants as nullary operations with constant values, composed with 0-many n-ary oper-
ations are n-ary operations with constant values. Thus, to be preserved by all constant
operations, any unary relation has to contain the entire set D, and any binary rela-
tion has to contain the diagonal relation ∆D. For the algebra D = (D,Ω) denote by
ΓdiagD = (Γ1,diag

D ,Γ2,diag
D ) the pair of sets such that

Γ1,diag
D (j, a) ⇐⇒ Γ1

D(j, a) ∧ (∀b ∈ A,Γ1
D(j, b))

Γ2,diag
D (i, a, b) ⇐⇒ Γ2

D(i, a, b) ∧ (∀c ∈ A,Γ2
D(j, c, c)).

(3.116)

Note that for some i, j, Γ1,diag
D,j and Γ2,diag

D,i are empty sets. An n-ary operation P on algebra
D is a polynomial operation if it is a polymorphism for relations from ΓdiagD , i.e.

P ∈ Polynom(D) ⇐⇒ Poln(P,D,ΓdiagD ). (3.117)
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For any two sets D and P the following Σ1,b
0 -definable relation claims that P is a ternary

discriminator on D.
PCD(D,P ) ⇐⇒ ∀a, b, c ∈ D,

(a = b ∧ P (a, b, c) = c) ∨ (a ̸= b ∧ P (a, b, c) = a).
(3.118)

To formalize a PC subuniverse we need the following definition.

Definition 63 (Polynomially complete algebra). We say that an algebra D = (D,Ω) is
polynomially complete if

PCA(D,Ω) ⇐⇒
⋁︂

P∈Π3
D

Pol3(P,D,ΓdiagD ) ∧ PCD(D,P ). (3.119)

Definition 64 (Polynomially complete algebra without a non-trivial binary absorbing or
central subuniverse). We say that an algebra D = (D,Ω) is an algebra without a non-
trivial binary absorbing or central subuniverse if it satisfies the following Σ1,b

0 -definable
relation:

subTA¬BACR(D,Ω) ⇐⇒ subTA(D,A,Ω)∧
∧

⋀︂
B<l

⋀︂
T<(3l)23

PsubS(B) ∧ Pol2(T,D,ΓD)→ ¬BAsubU(B,D, T )∧

∧
⋀︂
C<l

⋀︂
S<(4l)24

PsubS(C) ∧ Pol3(S,D,ΓD)→ ¬CRsubU(C,D, S).
(3.120)

Note that for a not fixed algebra B = (B,Ω), this relation would be Π1,b
2 since the size

of B would not be bounded, and therefore we could not use big conjunctions for sets
and ¬CRsubU(C,D, S) would be Σ1,b

1 -formula. We say that an algebra is polynomially
complete algebra without a non-trivial binary absorbing or central subuniverse if

PCA¬BACR(D,Ω) ⇐⇒ PCA(D,Ω) ∧ subTA¬BACR(D,Ω). (3.121)

Definition 65 (PC congruence). We say that a set σ < ⟨l, l⟩ is a PC congruence on
algebra D = (D,Ω) of size bounded by l if

PCCongm(D,Ω, σ) ⇐⇒ PCA¬BACR(D/σ,Ω/σ). (3.122)

Note that in this definition we apply notions from (3.116) to (3.121) to algebra (D/σ,
Ω/σ) and relations from ΓD/σ, recall (3.36).

Recall that for algebra A = (A,Ω) we denoted the set of all congruences on A and all
its subuniverses by ΣA. Using this list we can define the list of congruence on A and all
its subuniverses of any type, for example:

Σmax
A (i, a, b) ⇐⇒ ΣA(i, a, b) ∧maxCongm(A,Ω,ΣA,i);

ΣPC
D (i, a, b) ⇐⇒ ΣD(i, a, b) ∧ PCCongm(D,Ω,ΣD,i).

(3.123)

In these definitions we do not enumerate elements in the lists from the beginning, we thin
out the existing lists ΣA, ΣD. That is, for some i < 2l2 the new lists can be empty. Then
we say that σ is an intersection of all PC congruences on D if it satisfies the following Σ1,b

0
relation:

CongPC(D,Ω, σ) ⇐⇒ Congm(D,Ω, σ) ∧ (∀i < 2l2 ,ΣPC
D,i ̸= ∅ → σ ⊆ ΣPC

D,i )∧

∧
⋀︂

σ′<⟨l,l⟩
(Congm(D,Ω, σ′) ∧ σ ⊊ σ′)→ ∃j < 2l2 ,ΣPC

D,j ̸= ∅, ∃a, b ∈ D,

σ′(a, b) ∧ ¬ΣPC
D,j(a, b).

(3.124)
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A subuniverse E ⊆ D is called a PC subuniverse if E = E0 ∩ ... ∩Es−1 where each Ei
is an equivalence class of some PC congruence.

Definition 66 (PC subuniverse, I definition). For an algebra D = (D,Ω), E is a PC
subuniverse if

PCsubU(E,D,Ω) ⇐⇒ (E = ∅) ∨ (E = D)∨
∨

(︁
(∃j < 2l2 ,∀a, b ∈ E,ΣPC

D (j, a, b))∧
∧(∃i < 2l2 ,∀a ∈ E,∀b ∈ D,ΣD(i, a, b)↔ b ∈ E)

)︁
.

(3.125)

A PC subuniverse can be empty or full (E = D). The condition in the second line ensures
that the entire E is inside exactly one block of any number of PC congruences (since we
do not restrict the number of different j’s in any way) and the condition in the third
line ensures that E is indeed a block of some congruence (not necessarily PC congruence
since due to the maximality, intersection of any number of PC congruences is not a PC
congruence).

We give a second definition of a PC subuniverse in this section straightaway. Lemma
7.13.1 is proved in [15].

Lemma 26 (Lemma 7.13.1, [15]). Suppose that σ1, ..., σk are all PC congruences on A.
Put Ai = A/σi, and define ψ : A→ A1 × ...×Ak by ψ(a) = (a/σ1, ..., a/σk). Then

1. ψ is surjective, hence A/ ∩i σi ∼= A1 × ...×Ak;

2. the PC subuniverses are the sets of the form ψ−1(S) where S ⊆ A1 × ... × Ak is a
relation definable by unary constraints of the form xi = ai;

3. for each non-empty PC subuniverse B of A there is a congruence θ of A such that B
is an equivalence class of θ and A/θ is isomorphic to a product of PC algebras having
no non-trivial binary absorbing subuniverse or center. That is, A/θ ∼= Aj1× ...×Ajs
where each Aji is a PC algebra that has no non-trivial binary absorbing subuniverse
or center.

Since for a fixed algebra A = (A,Ω) and all its subalgebras D we know the list of
all PC congruences, we do not need to prove this lemma, the algorithm can just check
it. Then, since the algebra A and all its subalgebras are bounded by size l, the maximal
possible number of quotients in the direct product D0 × ...×Dk−1 is s = log2l.

Definition 67 (PC subuniverse, II definition). For an algebra D = (D,Ω), s = log2l, E
is a PC subuniverse if

PCsubU(E,D,Ω) ⇐⇒ (E = ∅) ∨ (E = D) ∨
(︁
(∃i < 2l2 , ∀a ∈ E,∀b ∈ D,

ΣD(i, a, b)↔ b ∈ E)∧
∧

⋁︂
(σ0∈ΣP C

D )

⋁︂
(H∈MD,ΣD,i,σ0 )

ISOalg(D/ΣD,i,Ω/ΣD,i, D/σ0,Ω/σ0, H)∨

∨
⋁︂

(σ0,σ1∈ΣP C
D )

⋁︂
(H∈MD,ΣD,i,σ0,σ1 )

ISOalg(D/ΣD,i,Ω/ΣD,i, D/σ0 ×D/σ1,

Ω/σ0 ∩ σ1, H) ∨ ...
... ∨

⋁︂
(σ0,...,σs−1∈ΣP C

D )

⋁︂
(H∈MD,ΣD,i,σ0,...,σs−1 )

ISOalg(D/ΣD,i,Ω/ΣD,i, D/σ0 × ...

...×D/σs−1,Ω/ ∩i σi, H)
)︁
.

(3.126)
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3.2.7.4 Linear subuniverse

An idempotent finite algebra D = (D,Ω), where Ω is an m-ary idempotent special WNU
operation, is called linear if it is isomorphic to (Zp1× ...×Zpk

, x1 + ...+xm) for prime (not
necessarily distinct) numbers p1, ..., pk. For every finite idempotent algebra, there exists
the smallest congruence (not necessarily proper), called the minimal linear congruence,
such that the factor algebra is linear.

Since the algebra A and all its subalgebras are bounded by size l, the maximal possible
number of prime fields in the prime product Zp0 × ... × Zpk−1 is s = log2l. We formalize
a finite abelian group Zp = (Zp, 0,+,−), where p is prime, as a set Zp, |Zp| = p ∧ ∀a <
p, Zp(a), and +(mod p), −(mod p). For any direct product up to k ≤ log2l abelian groups
Zp0 × ...×Zpk−1 we define a set Zp0 × ...×Zpk−1 ≤ (p0 + ...+ pk−1 + 1)2k such that for all
a0 < p0, ..., ak−1 < pk−1, (a0, ..., ak−1) ∈ Zp0 × ...× Zpk−1 and

∀a0, b0 < p0, ...,∀ak−1, bk−1 < pk−1,

+((a0, ..., ak−1), (b0, ..., bk−1)) = (a0 +(mod p0) b0, ..., ak−1 +(mod pk−1) bk−1),
−((a0, ..., ak−1), (b0, ..., bk−1)) = (a0 −(mod p0) b1, ..., ak−1 −(mod pk−1) bk−1).

(3.127)

We will denote elements (a0, ..., ak−1) of Zp0× ...×Zpk−1 by āk, and will omit index (mod p)
when it does not lead to confusion. Also, we allow the use of trivial algebras (with one
element 0) in a product, so Prime′(p) ⇐⇒ Prime(p) ∨ p = 1.

Definition 68 (Linear algebra of size at most |A|). For an algebra D = (D,Ω), s = log2l,
we say that it is a linear algebra if

LinA(D,Ω) ⇐⇒
⋁︂
p0≤l

P rime′(p0)

⋁︂
H∈MD,p0

ISOalg(D,Ω, Zp0 , ā
1
1 + ...+ ā1

m, H)∨

∨
⋁︂

p0·p1≤l
P rime′(p0),P rime′(p1)

⋁︂
H∈MD,p0,p1

ISOalg(D,Ω, Zp0 × Zp1 , ā
2
1 + ...+ ā2

m, H) ∨ ...

... ∨
⋁︂

p0·...·ps−1≤l
P rime′(p0),...,P rime′(pk)

s=log2l

⋁︂
H∈MD,p0,...,ps−1

ISOalg(D,Ω, Zp0 × ...× Zps−1 ,

ās1 + ...+ āsm, H).

(3.128)

Definition 69 (Linear congruence). We say that a set σ < ⟨l, l⟩ is a linear congruence on
algebra D = (D,Ω) if

LinCongm(D,Ω, σ) ⇐⇒ LinA(D/σ,Ω/σ). (3.129)

We can also check that any linear congruence of algebra A (or its subalgebras) bounded
by size l is a linear congruence for any subalgebra of A (or their subalgebras). Let us define
the set of all linear congruences on D as:

Σlin
D (i, a, b) ⇐⇒ ΣD(i, a, b) ∧ LinCongm(D,Ω,ΣD,i). (3.130)

Then we say that σ is the minimal linear congruence (an intersection of all linear congru-
ences) on D if

CongLin(D,Ω, σ) ⇐⇒ ∃i < 2l2 , σ = Σlin
D,i ∧ ∀j < 2l2 ,Σlin

D,j ̸= ∅ → σ ⊆ Σlin
D,j . (3.131)
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Note that the definition of CongLin differs from the definition of CongPC since any
intersection of linear congruences is again a linear congruence. A subuniverse L ⊆ D is
called a linear subuniverse if it is stable under CongLin:

LNsubU(L,D,Ω) ⇐⇒ SwNU(Ω, L) ∧
⋀︂

σ≤⟨l,l⟩
CongLin(D,Ω, σ)→

→ Stable1(L, σ).
(3.132)

Remark 9. A linear subuniverse is a union of classes of CongLin. However, not every
union of such classes needs to be a subuniverse. For example, for a linear algebra (D,Ω)
that is isomorphic to (Zp, x1 + ...+xm), and a minimal linear congruence ∆ every element
of Zp is a subuniverse (since Ω is idempotent), but not any other proper subset of Zp is a
subuniverse. From here, we get that there are no non-trivial congruences on (D,Ω) (every
congruence block must be a subuniverse).

3.2.7.5 One-of-four and minimal subuniverse

All the following formulas in this section are Σ1,b
0 (they would not if A is not fixed). We

say that B is one-of-four subuniverse of D if

1of4subU(B,D,Ω) ⇐⇒ PCsubU(B,D,Ω) ∨ LNsubU(B,D,Ω)∨
∨

⋁︂
T<(3l)8

BAsubU(B,D, T,Ω) ∨
⋁︂

S<(4l)16

CRsubU(B,D, S,Ω). (3.133)

We say that a subuniverse is minimal if it is non-trivial and inclusion minimal (does not
contain any other subuniverse of the same type). For example,

minBAsubU(B,D, T,Ω) ⇐⇒ BAsubU(B,D, T,Ω) ∧
⋀︂
B′<l

⋀︂
T ′<(3l)8

B′ ⊊ B →

→ ¬BAsubU(B′, D, T ′,Ω);
minLNsubU(B,D,Ω) ⇐⇒ LNsubU(B,D,Ω) ∧

⋀︂
B′<l

B′ ⊊ B →

→ ¬LNsubU(B′, D,Ω).

(3.134)

For linear and PC subuniverses we also will use the fact that a minimal linear/ PC sub-
universe is a block of CongLin/ CongPC. We denote a block B of a congruence σ as

Block(B,D, σ) ⇐⇒ ∀a ∈ B, ∀b ∈ D,σ(a, b)↔ b ∈ B. (3.135)

Then
minPCsubUB(B,D,Ω) ⇐⇒

⋀︂
σ<(2l)4

CongPC(D,Ω, σ)→

→ Block(B,D, σ);
minLNsubUB(B,D,Ω) ⇐⇒

⋀︂
σ<(2l)4

CongLin(D,Ω, σ)→

→ Block(B,D, σ).

(3.136)

3.2.8 Reductions

Note that all further definitions for all types of reductions and strategies are Σ1,b
0 -formulas.
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Definition 70 (Different types of reductions). For an instance Θ = (X , Ä) with domain
set D = (D0, ..., Dn−1) we say that a set D(⊥) = (D(⊥)

0 , ..., D
(⊥)
n−1) is an absorbing reduction

of D if there exists a term operation T such that D(⊥)
i is a binary absorbing subuniverse

of Di with the term operation T for every i:

BARed(D(⊥), D) ⇐⇒ Red(D(⊥), D) ∧
⋁︂

T<(3l)8

Pol2(T,D,ΓD)∧

∧∀i < n, BAsubU(D(⊥)
i , Di, T,Ω).

(3.137)

We say that D(⊥) = (D(⊥)
0 , ..., D

(⊥)
n−1) is a central reduction if Di is a central subuniverse

for every i:
CRRed(D(⊥), D) ⇐⇒ Red(D(⊥), D) ∧ ∀i < n,⋁︂
Si<(4l)16

Pol3(Si, D,ΓD) ∧ CRsub(D(⊥)
i , Di, Si). (3.138)

We say that D(⊥) = (D(⊥)
0 , ..., D

(⊥)
n−1) is a PC reduction if

PCRed(D(⊥), D) ⇐⇒ Red(D(⊥), D) ∧ ∀i < n,

PCsubU(D(⊥)
i , Di,Ω) ∧ subTA¬BACR(Di,Ω).

(3.139)

We say that D(⊥) = (D(⊥)
0 , ..., D

(⊥)
n−1) is a linear reduction if

LNRed(D(⊥), D) ⇐⇒ Red(D(⊥), D) ∧ ∀i < n,

LNsubU(D(⊥)
i , Di,Ω) ∧ subTA¬BACR(Di,Ω).

(3.140)

In an obvious way, we can define a minimal absorbing/ central/ PC/ linear reduction, a
non-linear reduction nonLNRed(D(⊥), D) and one-of-four reduction 1of4Red(D(⊥), D).
Remark 10. A CSP instance Θ = (X , Ä) is a set

Θ(⟨ ⟨n, ⟨n, n⟩⟩⏞ ⏟⏟ ⏞
X

, ⟨⟨n, l⟩, ⟨⟨n, l⟩, ⟨n, l⟩⟩⟩⏞ ⏟⏟ ⏞
Ä

⟩)

Let us denote the length of Θ as a number function instsize(n, l) = |Θ|.

Definition 71 (A strategy for a CSP instance). A strategy for a CSP instance Θ = (X , Ä)
with domain set D is a sequence of reductions D(0), ..., D(s), where D(j) = (D(j)

0 , ..., D
(j)
n−1),

such that D(0) = D and D(j) is a one-of-four 1-consistent reduction of Θ(j−1) for every
j ≥ 1. A strategy is called minimal if every reduction in the sequence is minimal.

Since after any reduction we decrease at least one domain by at least one element, to
represent the entire strategy it is enough to consider a set (matrix) with nl rows, each row
representing a reduction of the CSP instance. We need to track both domain reductions
(the set VÄ, or D) and restrictions of the constraint relations (the set EÄ). An input
digraph X does not change, but for consistency, we will track it as well. Thus, a strategy
for an instance Θ up to s ≤ nl step is a set ΘStr < ⟨nl, instsize(n, l)⟩ such that:

Strategy(Θ,ΘStr, s) ⇐⇒ Θ0
Str = Θ ∧ ∀1 ≤ j ≤ s, 1C(Θ(j)

Str)∧

∧redinst(Θ(j−1), D(j)) = Θ(j)
Str ∧ ∀1 ≤ j ≤ s, 1of4Red(D(j)

Str, D).
(3.141)
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A strategy is called minimal if

minStrategy(Θ,ΘStr, s) ⇐⇒ Strategy(Θ,ΘStr, s) ∧ ∀1 ≤ j ≤ s,

min1of4Red(D(j)
Str, D).

(3.142)

When we want to consider the domain strategy separately, we will refer to it as DStr <
⟨nl, ⟨n, l⟩⟩, each jth row representing D(j).

3.2.9 Three universal algebra axiom schemes

We are now ready to recall formally the three universal algebra axiom schemes from
Chapter 2 (ref. [6]). These schemes are formulated for any constraint language ΓA over
the set A of size l, fixed algebra A = (A,Ω) with Ω being a special m-ary WNU operation.
They consist of finitely many ∀Σ1,b

2 -formulas (for all possible subuniverses of A). The
relations CCInst(X , Ä) and IRDInst(X , Ä) are Π1,b

2 , corresponding to Θ = (X , Ä) being
a cycle-consistent and irreducible instance, respectively, see Chapter 2 (ref. [6]).

BAA-axiom scheme reflects that if Θ is a cycle-consistent irreducible CSP instance,
and B is a non-trivial binary absorbing subuniverse of Di, then Θ has a solution only if
Θ has a solution with xi ∈ B (Theorem 5.5 in [15]):

BAA,B,D =def ∀X = (VX , EX ),∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
B ⊊ D ∧ SwNUm(Ω, D) ∧ SwNUm(Ω, B)∧

∧∃T < (3l)23
, Pol2(T,D,ΓA) ∧BAsubS(B,D, T )∧

∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧
∃i < n,Di = D∧

HOM¨ (X , Ä)
)︁

=⇒ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., B, ..., Dn−1)).

(3.143)

CRA-axiom scheme states that if Θ is a cycle-consistent irreducible CSP instance, and
C is a non-trivial central subuniverse of Di, then Θ has a solution only if Θ has a solution
with xi ∈ C (Theorem 5.5 in [15]):

CRA,D,C =def ∀X = (VX , EX ), ∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
C ⊊ D ∧ SwNUm(Ω, D) ∧ SwNUm(Ω, C)∧

∃S < (4l)24
, Pol3(S,D,ΓA) ∧ CRsubS(C,D, S)∧

∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧
∃i < n,Di = D∧

HOM¨ (X , Ä)
)︁

=⇒ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., C, ...,Dn−1)).

(3.144)

Finally, PCA-axioms says that if Θ is a cycle-consistent irreducible CSP instance, there
does not exist a non-trivial binary absorbing subuniverse or a non-trivial center on Dj for
every j, (Di,Ω)/σi is a polynomially complete algebra, and E is an equivalence class of
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σi, then Θ has a solution only if Θ has a solution with xi ∈ E (Theorem 5.6 in [15]):

PCA,D,E =def ∀X = (VX , EX ),∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
[∀j < n,∀B < l, ∀T < (3l)23

, Pol2(T,Dj ,ΓA)→ ¬BAsubS(B,Dj , T )∧
∧∀j < n,∀C < l,∀S < (4l)24

, Pol3(S,Dj ,ΓA)→ ¬CRsubS(C,Dj , S)]
∧∃σ < ⟨l, l⟩,∃D/σ < l,∃Ω/σ < (ml)2m+1

, FAm(D/σ,Ω/σ,D,Ω, σ)∧
∧∃P < (4l)24

, Pol3(P,D/σ,ΓdiagD /σ) ∧ PCD(D/σ, P )∧
SwNUm(Ω, D) ∧ E ⊊ D ∧ (∀a ∈ E,∀b ∈ D,σ(a, b)↔ b ∈ E)∧

∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧
∃i < n,Di = D∧

HOM¨ (X , Ä)
)︁

=⇒ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., E, ..., Dn−1)).

(3.145)

3.3 Formalization of proofs of the three axiom schemes

In this section we do not differentiate between a solution set and its projection to any
subset of coordinates since the proofs do not differ.

3.3.1 Formalization of some auxiliary lemmas and theorems

We are going to present the formalization of a number of selected statements and their
proofs used in the proof of the soundness of the algorithm. We selected those that genuinely
represent various types of arguments encountered in [15], [16]. It should be sufficiently
clear that other statements of a similar nature can be formalized analogously.

3.3.1.1 Properties of a binary absorbing subuniverse on An

We say that a solution set to a CSP instance Θ over ΓA on n variables, RΘ ≤ D0×...×Dn−1
is a binary absorbing subuniverse of D0× ...×Dn−1 if there exists a binary term operation
T ∈ Pol(ΓA) such that for any two maps H,H ′ : [n]→ (D0, ..., Dn−1) where H /∈ RΘ and
H ′ ∈ RΘ, the maps usepol2(T,H,H ′) and usepol2(T,H ′, H) are in RΘ. An analogous
definition can be formulated for any projection of the set of solutions Ri1,...,is

Θ .

Lemma 27 (Lemma 7.1, [15]). Suppose that RΘ is defined by a pp-formula Θ(x0, ..., xn−1)
and Θ′ is obtained from Θ by replacing some constraint relations ρ1, ..., ρs by constraint
relations ρ′

1, ..., ρ
′
s such that ρ′

k absorbs ρk with a term operation T for every k. Then V 1

proves that the relation RΘ′ defined by Θ′(x0, ..., xn−1) absorbs RΘ with the term operation
T .

Proof. Let us consider two CSP instances Θ = (X , Ä) and Θ′ = (X ′, Ä′), where X ′ = X
(the analogous reasoning can be applied to projections). Suppose that there exists a binary
term T ∈ Pol(ΓA) such that for each i < n, D′

i ⊆ Di binary absorbs Di and for all i, j < n
with EX (i, j), Eij

Ä′ ⊆ EijÄ binary absorbs EijÄ :

∀a ∈ D′
i,∀b ∈ Di, ∃c1, c2 ∈ D′

i, T (a, b) = c1 ∧ T (b, a) = c2∧
∀a1, b1 < l, ∀a2, b2 < l, (EijÄ(a1, b1) ∧ Eij

Ä′(a2, b2))→

→ ∃a3, a4 < l, ∃b3, b4 < l, Eij
Ä′(a3, b3) ∧ Eij

Ä′(a4, b4)∧
∧T (a1, a2) = a3 ∧ T (a2, a1) = a4 ∧ T (b1, b2) = b3 ∧ T (b2, b1) = b4.

(3.146)
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Note that for some i, j < n, D′
i and Eij

Ä′ could be equal to Di and EijÄ . If RΘ′ or/ and RΘ
are empty, we are done (RΘ′ is an empty subuniverse). Suppose that both instances have
solutions. Every solution to the instance Θ′ is a solution to the instance Θ. Consider any
two solutions to Θ and Θ′, homomorphisms H and H ′ respectively. Consider two maps
H1 = usepol2(T,H,H ′) and H2 = usepol2(T,H ′, H). We need to prove that these maps
are homomorphisms from X ′ to Ä′. Suppose that H1 (or H2) is not a homomorphism.
Then there exists an edge in X ′, EX ′(i, j) such that H1 fails to map it to an edge in Ä′.
But this contradicts with (3.146).

Corollary 2 (Corollary 6.1.3, [16]). Suppose RΘ ≤ D0× ...×Dn−1 and Bi is an absorbing
subuniverse in Ai with a term T for every i. Then V 1 proves that (B0 × ...×Bn−1)∩RΘ
is an absorbing subuniverse of RΘ with the term T .

Corollary 3 (Corollary 7.1.2, [15]). Suppose that RΘ ≤ D0 × ... × Dn−1 is a relation
such that pr0(RΘ) = D0 and B = pr0((B0 × ...×Bn−1) ∩ RΘ), where Bi is an absorbing
subuniverse in Di with a term T for every i. Then V 1 proves that B is an absorbing
subuniverse in D0 with the term T .

Proof. Consider RΘ as a solution set to some CSP instance Θ = (X , Ä). Since every Bi
is an absorbing subuniverse of Di, (B0 × ...×Bn−1)∩RΘ is a solution set for an instance
Θ′ defined similarly to (3.146) with a domain set D′ = {B0, ..., Bn−1} (for all i, j < n,
Eij

Ä′ = EijÄ). Then from pr0(RΘ) = D0 it follows that B is an absorbing subuniverse of
D0.

Lemma 28 (Lemma 7.3, [15]). Suppose that RΘ is a non-trivial absorbing subuniverse
of D0 × ... × Dn−1. Then V 2 proves that for some i there exists a non-trivial absorbing
subuniverse Bi in Di with the same term.

Proof. The lemma is proved by induction on the arity of RΘ. RΘ is a non-trivial bi-
nary absorbing subuniverse of D0 × ... × Dn−1 if there exists a solution to Θnull that is
not a solution to Θ, and there exists a binary term T such that for any two homomor-
phisms H from X to Ä and Hnull from Xnull to Änull, both maps usepol2(T,H,Hnull) and
usepol2(T,Hnull, H) are homomorphisms from X to Ä.

Consider the following B(Σ1,b
1 )-formula ϕ(t). Here, as fixed parameters, we use ΓA

and A = (A,Ω). Induction goes on the size of the instance, VX = VXnull
= t. Witnesses

(∀ quantification) in Σ1,b
2 -induction corresponding to t are sets EX , EXnull

, Ä with the set
of vertices of size ⟨t, l⟩.

ϕ(t) :=
(︁
VX = VXnull

= t ∧DG(Θ) ∧DGnull(Θnul)∧
∧Inst(Θ,ΓA) ∧ Inst(Θnull,ΓA)

)︁
∧

∧
(︁ ⋁︂
T∈Π2

A

∀H,Hnull ≤ ⟨t, ⟨t, l⟩⟩, HOM¨ (X , Ä, H) ∧HOM¨ (Xnull, Änull, Hnull)→

→ HOM¨ (X , Ä, usepol2(T,H,Hnull)) ∧HOM¨ (X , Ä, usepol2(T,Hnull, H)
)︁

∧
(︁
∃H ′ ≤ ⟨t, ⟨t, l⟩⟩, HOM¨ (Xnull, Änull, H ′) ∧ ¬HOM¨ (X , Ä, H ′)

)︁
=⇒

=⇒ ∃i < t,
⋁︂
B<l

Bi ⊊ Ai ∧BAsubU(Bi, Ai, T,Ω).

(3.147)

The expression in the first brackets says that Θ and Θnull are CSP instances over ΓA on t
variables, and Θnull is an empty instance. This is obviously true for t = 1. Suppose that
it is true for t = s and consider t = s + 1. If the projection of RΘ on s + 1 coordinate
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is not Ds+1, then Rs+1
Θ is a binary absorbing subuniverse due to the definition of a non-

trivial absorbing subuniverse. Otherwise, choose any element a ∈ Ds+1 such that RΘ does
not contain all homomorphisms sending s + 1 to a and consider the new s-ary relation
RΘ′ = {(a0, ..., as)|(a0, ..., as, a) ∈ RΘ}. Due to Lemma 27, it is a non-trivial binary
absorbing subuniverse for D0 × ... × Ds (T is idempotent). But note that RΘ′ is also a
solution set to a specific CSP instance Θ′ on s variables: we just remove from EX of Θ all
edges adjacent to xs+1 and for all j < s + 1 restrict Ej(s+1)

Ä and E
(s+1)j
Ä to pairs ending

and starting with a. Thus, we can apply the induction hypothesis.

The following lemma from [8] gives us a more precise theory.

Lemma 29 ([8]). For all i ≥ 1, the theory T i2 proves the induction scheme IND for B(Σb
i)-

formulas.

Lemma 30 (Lemma 7.5, [15]). Suppose D(1) is an absorbing reduction of a CSP instance
Θ and a relation RΘ ≤ D0 × ...×Dn−1 is subdirect. Then R

(1)
Θ is not empty.

Proof. Suppose the opposite. Then R
(1)
Θ ∩ D(1)

0 × ... × D(1)
n−1 = ∅, where for each i < n,

D
(1)
i is a binary absorbing subuniverse of Di with the term T . This means that for every

homomorphism Hi1 ∈ RΘ there exists i < n such that Hi1(i) = ⟨i, a⟩, where a ∈ Di\D(1)
i .

Since RΘ is subdirect, for any i < n and for any b ∈ D(1)
i there exists a homomorphism Hi2

such that Hi2(i) = ⟨i, b⟩. Composing these homomorphisms, since T is a polymorphism,
we again get a homomorphism Hi3 = usepol2(T,Hi1 , Hi2) such that Hi3(i) = ⟨i, c⟩ for
some c ∈ D(1)

i . Consider any j ̸= i < n such that Hi3(j) = ⟨j, d⟩ with d /∈ D(1)
j . Again,

since RΘ is subdirect, there must be a homomorphism Hi4 such that Hi4(j) = ⟨j, e⟩ for
some e ∈ D(1)

j . We compose these two homomorphisms and get Hi5 = usepol2(T,Hi3 , Hi4)
such that Hi5(i) = ⟨i, f⟩ and Hi5(j) = ⟨j, g⟩ with f ∈ D(1)

i and g ∈ D(1)
j . Applying this

procedure at most n times, we will get a homomorphism in R
(1)
Θ , contradiction.

3.3.1.2 Properties of a central subuniverse on An

We say that a solution set to a CSP instance Θ over ΓA on n variables, RΘ ≤ D0×...×Dn−1
is a central absorbing subuniverse of D0×...×Dn−1 if there exists a ternary term operation
S ∈ Pol(ΓA) such that RΘ absorbs D0× ...×Dn−1 with S and for any map H /∈ RΘ such
that for all i < n, H(i) = ⟨i, ai⟩, the following conditions hold. If we construct two new
CSP instances, ΘL and ΘR as follows:

• We double the number of variables, DL = DR = {D0, ..., D2n−1} with Di = Dn+i
for every i < n;

• For the instance ΘL we copy digraph X for the first n variables, and we join it
with a path Pn of length n, namely EPn(xn− 1, xn), ..., EPn(x2n−2, x2n−1). We copy
Ä for the first n variables and set the constraints for the path: Exn−1,xn

Än
as a full

relation and for the next edges Exn,xn+1
Än

= {(a0, a1)}, Exn+1,xn+2
Än

= {(a1, a2)},...,
E
x2n−2,x2n−1
Än

= {(an−2, an−1)}. Note that such a CSP instance is a CSP instance
over ΓA since Ω is idempotent and every single element of D0 × ... × Dn−1 is a
subuniverse;

• For the instance ΘR we do the same but in inversed manner (copy X and Ä for the
variables n, ..., 2n− 1);
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Then from solutions to ΘL and ΘR by applying Ω we cannot generate the map H such that
for i < n, H(i) = H(n+ i) = ⟨i, ai⟩. Note that to define this fact, we need the third-order
induction. The number of maps on 2n variables is l2n, so to define the generated algebra
CRΘL

∪RΘR
it is needed to consider at most l2n steps which we encode by strings:

∀H ≤ ⟨2n⟨2n, l⟩⟩, C
[∅]
RΘL

∪RΘR
(H) ⇐⇒ RΘL

(H) ∨ RΘR
(H)∧

∀∅ ≤ T < 2n⌈log2l⌉, ∀H ≤ ⟨2n⟨2n, l⟩⟩,

C
[S(T )]
RΘL

∪RΘR
(H) ⇐⇒ C

[T ]
RΘL

∪RΘR
(H)∨

∨∃H1, ...,Hm ≤ ⟨2n⟨2n, l⟩⟩, C
[T ]
RΘL

∪RΘR
(H1) ∧ ... ∧ C

[T ]
RΘL

∪RΘR
(Hm)∧

∧ω(H1, ...,Hm) = H.

(3.148)

The analogous definition can be formulated for any projection of the solution set Ri1,...,is
Θ .

Lemma 31 (Composed Lemma 7.6, [15], and Theorem 6.9, [16]). Suppose RΘ is defined by
a pp-formula Θ(x0, ..., xn−1) and Θ′ is obtained from Θ by replacement of some constraint
relations ρ1, ..., ρs by constraint relations ρ′

1, ..., ρ
′
s such that ρ′

k is a central subuniverse for
ρk with a term operation S for every k. Then V 1 proves that the relation RΘ′ defined by
Θ′(x0, ..., xn−1) is a central subuniverse for RΘ with the term operation S.

Proof. Consider two CSP instances Θ = (X , Ä) and Θ′ = (X ′, Ä′), where X ′ = X (again,
the analogous reasoning can be applied to projections). Due to the assumption, there
exists a ternary term S ∈ Pol(ΓA) such that for each i < n, D′

i ⊆ Di ternary absorbs Di

and for all i, j < n with EX (i, j), Eij
Ä′ ⊆ EijÄ ternary absorbs EijÄ . The defining relation

is analogous to (3.146). Also, for each i < n, and for any a ∈ Di\D′
i, (a, a) /∈ Sg(Xi

(a)),
where

Xi
(a) = {{a} ×D′

i, D
′
i × {a}}, (3.149)

and for all i, j < n with EX (i, j), and for every (a, b) ∈ EijÄ\E
ij

Ä′ we have (a, b, a, b) /∈
Sg(Xij

(a,b)), where
Xij

(a,b) = {(a, b)} × Eij
Ä′ ∪ EijÄ′ × {(a, b)}. (3.150)

We will show how to define Sg(Xij
(a,b)) analogously to a central subuniverse we defined

before, using the closure operator Cl(Xij
(a,b)). Since A is finite of size l and |Xij

(a,b)| = 2|Eij
Ä′ |,

we do not need more than (l4− 2|Eij
Ä′ |) steps. Not to depend on Eij

Ä′ , choose the value l4.
For set Xij

(a,b) ≤ ⟨⟨l, l⟩, ⟨l, l⟩⟩, iteratively define the following set Clt
Xij

(a,b)
up to l4:

∀c, d, e, f < l, Cl0
Xij

(a,b)
(c, d, e, f) ⇐⇒ Xij

(a,b)(c, d, e, f)∧

∧∀0 < t < l4,∀c, d, e, f < l, Clt
Xij

(a,b)
(c, d, e, f) ⇐⇒ Clt−1

Xij
(a,b)

(c, d, e, f)∨

∨∃c1, ..., cm, d1, ..., dm, e1, ..., em, f1, ..., fm ∈ A,
Clt−1

Xij
(a,b)

(c1, d1, e1, f1) ∧ ... ∧ Clt−1
Xij

(a,b)
(cm, dm, em, fm)∧

∧Ω(c1, ..., cm) = c ∧ Ω(d1, ..., dm) = d ∧ Ω(e1, ..., em) = e ∧ Ω(f1, ..., fm) = f.

(3.151)

Therefore,

∀i, j < n,∀a, b < l, (EX (i, j) ∧ EijÄ(a, b) ∧ ¬Eij
Ä′(a, b))→ ¬Cll

4

Xij
(a,b)

(a, b, a, b). (3.152)
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That RΘ′ absorbs RΘ with ternary operation S can be proved as in Lemma 27. Suppose
that RΘ′ is not a central subuniverse of RΘ. Then there exists a homomorphism H from
X to Ä, sending each i < n to ⟨i, ai⟩, such that it is not a homomorphism from X ′ to
Ä′, and if we construct two instances Θ′

L and Θ′
R as above, the subalgebra generated by

these two instances contains a homomorphism H ′ sending both i and n + i to ⟨i, ai⟩ for
each i < n. It would mean that for all i, j < n such that EX (i, j), elements of the form
(ai, aj , ai, aj) ∈ Di ×Dj ×Dn+i ×Dn+j must belong to sets Cll4

Xij
(ai,aj )

. But at least one

(ai, aj) must be from EijÄ\E
ij

Ä′ (otherwise H is a homomorphism from X ′ to Ä′). That
contradicts with (3.152).

Remark 11. Note that in the above proof, we do not even use the definition of the third-
order object. We lowered requirements to second-order objects and showed the contradic-
tion. Thus, we can remain in V 1.

Corollary 4 (Corollary 6.9.2, [16]). Suppose RΘ ≤ D0× ...×Dn−1 is a relation such that
pr0(RΘ) = D0 and C = pr0((C0 × ...×Cn−1)∩RΘ), where Ci is a central subuniverse in
Di for every i. Then V 1 proves that C is a central subuniverse in D0.

Corollary 5 (Corollary 6.9.3, [16]). Suppose RΘ ≤ D0 × ... × Dn−1 and Ci is a central
subuniverse for every i. Then V 1 proves that (C0×...×Cn−1)∩RΘ is a central subuniverse
for RΘ.

Lemma 32 (Lemma 7.7, [15]). Suppose RΘ is a non-trivial center of D0 × ... × Dn−1.
Then V 2 proves that for some i there exists a non-trivial center Ci of Di.

3.3.1.3 Properties of a PC subuniverse on An

While considering the properties of a PC subuniverse on D0× ...×Dn−1 we keep in mind
that we further use all auxiliary lemmas in the proof of the main statements about the
next reduction, and all reductions are constructed based on the separate domains upward
to subuniverses on their product. That is, there is no need to consider arbitrary PC
subuniverses on D0 × ...×Dn−1 or on the solution set RΘ. The problem here is that we
have not even a definition of a PC algebra for an arbitrary product or a PC congruence on
that product (recall that in the definition of PC algebra, we use fixed constraint language
ΓA). Thus, any time in the proofs we consider an arbitrary algebra D and its arbitrary
PC congruence σ, we may assume that D is a subuniverse R ≤ D0 × ...×Dn−1 and σ is
an extended congruence for some PC congruence σi on a domain Di.

Lemma 33 (Lemma 6.20, [16]). Suppose RΘ is a subdirect relation on D0 × ... × Dn−1
and Ei is a PC subuniverse of Di for every i. Then W 0

1 proves that (E0× ...×En−1)∩RΘ
is a PC subuniverse of RΘ.

Proof. Due to the assumption, there is a PC subuniverse Ei of Di for every i. If some Ei
is empty, then we are done. Otherwise, each Ei is a block of some congruence δi = ∩jσij
on Di, where σi1 , ..., σis are PC congruences on Di. We can extend every σij to the
product D0 × ... × Dn−1, and consider the congruence Cθi

= ∩k ̸=i C∇ext
Dk

∩ Cσext
ij

. Since
RΘ is subdirect, it is easy to check that a third-order map H that sends every H ∈
RΘ/Cθi

to a ∈ Di/σij such that H(i) = ⟨i, a⟩, is an isomorphism from (RΘ/Cθi
,FΩ/θi

)
to (Di/σij ,Ω/σij). So (RΘ/Cθi

,FΩ/θi
) acts like a PC algebra, and we will call CRΘ

σext
ij

restricted to RΘ an extended PC congruence for (RΘ,FΩ).
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It follows that for each Ei, Eexti ∩ RΘ is an intersection of blocks of extended PC
congruences restricted to (RΘ,FΩ), as well as Eext0 ∩ ...∩ Eextn−1 ∩RΘ, and we can call it an
extended PC subuniverse. By the definition of every Eexti , it is just E0×...×En−1∩RΘ.

Note that from the same reasoning, it follows that E0 × ...×En−1 is an extended PC
subuniverse of D0 × ...×Dn−1.

Lemma 34 (Lemma 6.18, [16]). Suppose that D is a PC algebra and RΘ ≤ Dn contains all
constant tuples (a, a, ..., a). Then V 0 proves that RΘ can be represented as a conjunction
of binary relations of the form xi = xj.

Proof. Since RΘ ≤ Dn contains all constant tuples (a, a, ..., a), every domain Di of a CSP
instance Θ is equal to D, and every binary constraint EijD̈ contains a diagonal relation
∆ij . Recall that an algebra is PC if there exists a ternary discriminator P such that
Pol3(P,D,ΓdiagD ). Therefore, P must preserve RΘ. We want to show that every EijD̈ that
is not a full binary relation is equal to relation ∆ij . Suppose that for some i, j < n

EijD̈ is neither a full nor diagonal relation. Then there must exist some a ̸= b such that
EijD̈ (a, b). But since P preserves EijD̈ , (P (a, a, b), P (a, b, b)) = (b, a) ∈ EijD̈ , and for every
c ̸= b, (P (a, b, c), P (a, a, c)) = (a, c) ∈ EijD̈ . Thus, EijD̈ is a full relation.

The following lemma follows from the previous lemma and some additional reasoning.

Lemma 35 (Lemma 6.19, [16]). Suppose that RΘ ≤ D0 × ... × Dn−1 is subdirect, Di

is a PC algebra without non-trivial binary absorbing and central subuniverses for every
i ∈ {1, ..., n− 1}, and D0 has no non-trivial central subuniverse. Then V 1 proves that RΘ
can be represented as a conjunction of binary relations δ1(xi1 , xj1), ..., δs(xis , xjs), where
for every l ≤ s the first variable of δl is uniquely determined whenever il ̸= 1 and the
second variable of δl is uniquely determined whenever jl ̸= 1.

Lemma 36 (Lemma 6.21, [16]). Suppose that RΘ is a subdirect relation on D0×...×Dn−1,
Ei is a PC subuniverse of Di for all i and E = pr0((E0 × ... × En−1) ∩ RΘ). Then V 1

proves that E0 is a PC subuniverse of D0.

Proof. We consider RΘ to be a solution set to some CSP instance Θ on n domains such
that for all i, j < n there is a constraint EX (i, j), but for some of them EijÄ are full
relations. By Lemma 26 (or by Definition 67) each Ei is a block of congruence δi such
that there are PC congruences σi0 , ..., σik−1 with k ≤ log2l and

Di/δi ∼= Di/σi0 × ...×Di/σik−1 .

Then we can consider the factorized instance ΘPC , constructed as follows. The in-
stance digraph XPC = X does not change. For a target digraph ÄPC , domain set is
DPC = {D0, D1/δ1, ..., Dn−1/δn−1}, i.e. we factorize every domain except the first one (or
equivalently factorize it by ∆0). Constraint relations are defined by a set EÄP C

such that

∀0 < i, j < n, EijÄP C
(a, b) ⇐⇒ Di/δi(a) ∧Dj/δj(b)∧

(∃c, d < l, δi(a, c) ∧ δj(b, d) ∧ EijÄ(c, d)),
∀i < n, E1i

ÄP C
(a, b) ⇐⇒ D0(a) ∧Di/δi(b) ∧ (∃c < l, δi(b, c) ∧ E1i

Ä (a, c)),

∀i < n, Ei1ÄP C
(a, b) ⇐⇒ D0(a) ∧Di/δi(b) ∧ (∃c < l, δi(b, c) ∧ Ei1Ä (c, a)).

(3.153)
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By Theorem 12 in Chapter 2 (ref. [6]), there is a canonical homomorphism Hc ≤
⟨⟨l, n⟩, ⟨l, n⟩⟩ from the target digraph Ä to the target digraph ÄPC such that for any
homomorphism H from X to Ä, the map HPC defined as

HPC(i) = ⟨i, a⟩ ⇐⇒ ∃b < l, (H(i) = ⟨i, b⟩ ∧Hc(⟨i, b⟩) = ⟨i, a⟩),

is a homomorphism from X to ÄPC . It is easy to see that pr0((E0×E1×...×En−1)∩RΘ) =
pr0((E0× e1× ...× en−1)∩RΘP C

) where for each 0 < i < n, ei is the representative of the
class Ei, and that RΘP C

is subdirect.
For any 0 < i < n, we can find Mi ∈ MDi,δiσi0 ,...,σik−1

such that

ISOalg(Di/δi,Ω/δi, Di/σi0 × ...×Di/σik−1 ,Ω/ ∩j σij ,Mi).

Let us combine all of these maps into one set M . For every i such that Mi ∈ MDi,δiσi0
, ...,

σik−1
for k < s = log2l we add to the end s − k trivial algebras Dik , ..., Dis−1 (containing

one element 0), set σik , ..., σis−1 to be trivial congruences and extend Mi to s+ 1-ary set.
Then for all a0, ..., as−1 < l,

∀0 < i < n, ∀a ∈ Di/δi, M(a) = (a0, ..., as−1) ⇐⇒ Mi(a) = (a0, ..., as−1)
i = 0, ∀a ∈ D0, M(a) = (a, 0, ..., 0).

(3.154)

Consider a CSP instance Θ′
PC on ns variables, with domain set

D′
PC = {D0, 0, ..., 0, D1/σ10 , ..., D1/σ1s−1 , ..., Dn−1/σn−10 , ..., Dn−1/σn−1s−1}

such that H ′
PC ∈ RΘ′

P C
if and only if HPC ∈ RΘP C

where H ′
PC is a map from [ns] to

[D′
PC ] defined from a homomorphism HPC as follows:

i = 0, H ′
PC(0) = ⟨0, a⟩ ⇐⇒ HPC(0) = ⟨0, a⟩,
∀0 < i < s, H ′

PC(i) = ⟨i, 0⟩,
∀0 < j < n,∀k < s, ∀a ∈ Dj/σjk , H

′
PC(js+ k) = ⟨js+ k, a⟩ ⇐⇒

⇐⇒ ∃b ∈ Dj/δj , ∃b0 ∈ Dj/σj0 , ...,∃bk−1 ∈ Dj/σjk−1 ,

∃bk+1 ∈ Dj/σjk+1 , ...,∃bs−1 ∈ Dj/σjs−1 ,

HPC(j) = ⟨j, b⟩ ∧M(b) = (b0, ..., bk−1, a, bk+1, ..., bs−1)

(3.155)

Strictly speaking, the instance Θ′ is not an instance over language ΓA, but we still can
define every 2s-ary relation Rij

Ä′
P C

,

Rij
Ä′

P C

(a0, ..., as−1, b0, ..., bs−1) ⇐⇒ ∃a ∈ D/δi∃b ∈ Dj/δj , E
ij

ÄP C
(a, b)∧

∧M(a) = (a0, ..., as−1) ∧M(b) = (b0, ..., bs−1).
(3.156)

Moreover, we can apply to Rij
Ä′

P C

a similar reasoning as in Lemma 34. The solution
set RΘ′

P C
is subdirect since RΘP C

is subdirect. Since every Dj/σjk is a PC algebra, it
follows that by Lemma 35, RΘ′

P C
can be represented as a conjunction of binary rela-

tions δ1(xi1 , xj1), ..., δs(xis , xjs), where for every l ≤ s the first variable of δl is uniquely-
determined whenever il ̸= 1 and the second variable of δl is uniquely-determined whenever
jl ̸= 1. Thus, for all 0 < j < n, k < s, for every a ∈ D0 there exists a unique b ∈ Dj/δjk
such that E1(js+k)

Ä′
P C

(a, b) (and analogously for the relation E
(js+k)1
Ä′

P C

). It follows that any
such relation divides D0 into |Dj/δjk | classes, and we can check that this is a PC congru-
ence on D0. Thus, pr0((E0×e1× ...×en−1)∩RΘP C

) can be represented as an intersection
of blocks of ns PC congruences (some of them can be trivial).
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3.3.1.4 Properties of a linear subuniverse on An

It is known that the ability to simulate an affine CSP (or historically the ability to count)
adds substantial complexity to the problem. Structures that cannot count are all tractable
and can even be solved by a simple constraint propagation algorithm.

The proof complexity of linear algebra (in the sense of a branch of mathematics) was
well studied in [12], or in [13]. In particular, Gaussian elimination was considered and was
shown to be formalizable in theory V 1. The proof of the following lemma can be easily
formalized in V 1, see the detailed proof, for example, in Chapter 2 (ref. [6]).

Notation 13. For linear algebras, we shall adhere to the following notation. We will
continue to denote elements of different domains Di, Dj by ai, aj. If we consider several
elements of the same domain, we add an index after the index of the domain, for example,
ai1, ..., aim. To represent an element aij as an element of the product of k ≤ log2l prime
fields Zp0 , ..., Zpk−1, we add the superscript ākij = (a0

ij , ..., a
k−1
ij ).

Lemma 37 (Lemma 7.20, [15]). Suppose that the relation RΘ ≤ (Zp1)n1 × ... × (Zpk
)nk

is preserved by x1 + ... + xm, where p1, ..., pk are distinct prime numbers dividing m − 1
and Zpi = (Zpi , x1 + ...+ xm) for every i. Then V 1 proves that RΘ = L1× ...×Lk, where
each Li is an affine subspace of (Zpi)ni.

Proof. Consider any CSP instance Θ on n variables such that each Di is a linear algebra,
i.e. LinA(Di,Ω). That is, for every i < n there are some k ≤ log2l, primes p0, ..., pk−1 < l,
and an isomorphism Mi ∈ MA,∆i,p0,...,pk−1 from (Di,Ω) to (Zp0 × ...×Zpk−1 , ā

k
i1 + ...+ ākim)

such that
Mi(aij) = ākij = (a0

ij , ..., a
k−1
ij ).

As for the PC subuniverses, to unify all Mi, for every k < s = log2l, we add s− k trivial
algebras Zpk

, ...,Zps−1 , representing their elements as 0’s. Thus, Mi(aij) = āsij . Then we
can construct M . For all a0

i , ..., a
s−1
i < l,

∀0 < i < n, ∀ai ∈ Di, M(ai) = (a0
i , ..., a

s−1
i ) ⇐⇒ Mi(ai) = (a0

i , ..., a
s−1
i ). (3.157)

We consider CSP instance ΘL on ns domains such that every solution to Θ, translated
naturally (analogously to (3.155)) is a solution to ΘL and vice versa. Again, it is not a
CSP instance over language ΓA, but all 2s-ary relations RijÄL

can be easily defined; see
(3.156). The most important thing is that these relations are preserved by m-ary sum.

For this proof, we do not need to collect equal Zpj from different domains to a group.
We define a vector space on Zp0 × ...× Zpns−1 as any subset of maps from [ns] to [DL] =
[Zp0 , ..., Zpns−1 ] such that it contains ’zero map’ H sending all i < ns to 0, and is closed
under +, i.e. for any two maps H1, H2, the map H3 = H1 +H2 such that

(H1 +H2)(i) = H3(i) = ⟨i, a⟩ ⇐⇒ ∃b, c ∈ Di,

H1(i) = ⟨i, b⟩ ∧H2(i) = ⟨i, c⟩ ∧ a = b+ c,
(3.158)

is also in that set. We define an affine subspace RΘL
of Zp0 × ... × Zpns−1 as a shift of

some linear subspace, i.e. such a set that for any map H ∈ RΘL
, the set of all maps H ′

such that H ′ + H ∈ RΘL
contains zero map and is closed under +. Note that when we

are talking about solution sets, it is a second-order definition:

AffSubS(RΘL
) ⇐⇒ ∀H ≤ ⟨n⟨n, l⟩⟩,∀H1, H2 ≤ ⟨n⟨n, l⟩⟩, HOM¨ (X , Ä, H)∧
∧HOM¨ (X , Ä, H +H1) ∧HOM¨ (X , Ä, H +H2)→

→ HOM¨ (X , Ä, H + (H1 +H2)).
(3.159)
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Then it is easy to show that the solution to ΘL is an affine subspace defining x − y +
z(mod pj) = Ω(x, z, y, ..., y).

Remark 12. Recall well-known facts from linear algebra. The number of k-dimensional
subspaces of n-dimensional vector space over finite field Zp is equal to Gaussian coefficient,[︄

n

r

]︄
p

= (pn − 1)(pn − p)...(pn − pk−1)
(pk − 1)(pk − p)...(pk − pk−1) ,

and the number of k-dimensional affine subspaces, i.e. in our case k-subuniverses of
(Znp , x1 + ...xm), is equal to

pn−k
[︄
n

r

]︄
p

.

Remark 13. Any affine subspace of (Zpi)ni is a linear translation of some vector subspace,
and any two subspaces of (Zpi)ni of the same dimension are isomorphic (elementary p-
subgroups). Thus, the only way to get a subgroup (or a quotient) is to ’lose’ some Zpi

from the product.
To prove some auxiliary lemmas and theorems, in addition to Definition 68, we need

to define a linear algebra on a product D0× ...×Dn−1 of algebras of size at most |A|. We
could define a linear algebra RΘ on n domains, each of which is isomorphic to a product
of k ≤ log2l prime fields, as a solution set to some CSP instance Θ or as a set of maps
closed under x1 + ...+xm. This defining relation is second-sorted and it would give us that
V 1 proves that the set of linear algebras is closed under taking subalgebras. The problem
here is that the resulting direct product isomorphic to relation RΘ will not be related
to the initial CSP instance Θ, it is considered exclusively as an algebra. We know that
any relation preserved by x1 + ...+ xm can be represented as a system of linear equations
over at most ns variables, where s = log2l, and this system can be solved by Gaussian
elimination. Different domains Zpi cannot be mixed in one subsystem of equations, but
variables over the same Zpi representing different xi, xj can. Suppose that domains Di, Dj

are both isomorphic to Z3, and the solution to CSP instance Θ for these two variables
contains the affine subspace (coset) {(1, 1), (2, 0), (0, 2)}. This is isomorphic to (Z3,Ω),
but we must lose one domain. The same would happen while taking the quotient and in
the proofs of some results about linear algebras on n domains, we need the closeness of
a set of linear algebras under taking quotients, especially extended ones. So we cannot
avoid an isomorphism between third-order objects. Recall that we allow trivial algebras
Z1 and that solution set to any CSP instance Θnull on n domains is a full relation.
Definition 72 (Linear algebra on a product of algebras of size at most l). For an algebra
(R,F) defined on a set of maps from [k] to [D′

0, ..., D
′
k−1], where k ≤ n, we say that R is

a linear algebra on n domains if there exists a set of n domains D and the set of n m-ary
operations F on these domains such that every algebra (Di, Fi) is linear and there is an
isomorphism from (R,F) to an algebra (D0× ...×Dn−1,FF0,...,Fn−1), where D0× ...×Dn−1
and FF0,...,Fn−1 are defined as in (3.22)-(3.23):

LinA(R,F) ⇐⇒ ∃D ≤ ⟨n, l⟩,∃F ≤ ⟨n, l, l, ..., l⏞ ⏟⏟ ⏞
m times

⟩, ∀i < n, LinA(Di, Fi)∧

∧ISO3,3
alg(R,F,D0 × ...× Dn−1,FF0,...,Fn−1).

(3.160)

Note that the defining relation is third-order because of the relation ISO3,3
alg. In an obvious

way, we can define a linear and a minimal linear congruence Cθ for any algebra on n
domains (R,F).

120



From Lemma 37, definition of linear algebras and definition of linear algebras on prod-
ucts, we conclude the following corollary.

Corollary 6. V 0 proves that the set of linear algebras is closed under taking subalgebras
and quotients. W 1

1 proves that the set of linear algebras on a product of algebras of size at
most |A| is closed under taking subalgebras and quotients.

In the presence of the third-order definition of linear algebra on n domains, the follow-
ing lemmas can be proved almost exactly as in [15].

Lemma 38 (Lemma 7.21, [15]). W 1
1 proves that a linear algebra has no non-trivial ab-

sorbing subuniverse, non-trivial central subuniverse, or non-trivial PC subuniverse.

Lemma 39 (Lemma 7.24.1, [15]). Suppose that RΘ ≤ D0 × ...×Dn−1 is a relation such
that pr0(RΘ) = D0, there are no non-trivial binary absorbing subuniverses on D0, and
L = pr0((L1 × ... × Ln−1) ∩ RΘ) where Li is a linear subuniverse of Di for every i < n.
Then W 1

1 proves that L is a linear subuniverse of D0.

The following lemma can be proved similarly to Lemma 33.

Lemma 40 (Lemma 7.25, [15]). Suppose RΘ is a subdirect relation on D0× ...×Dn−1 and
Li is a linear subuniverse of Di for every i. Then W 0

1 proves that (L0 × ...× Ln−1) ∩RΘ
is a linear subuniverse of RΘ.

3.3.1.5 Common properties and Interaction between subuniverses

The common property for subuniverses C0, ..., Cn−1 of a fixed type (any but linear) is that
there does not exist (C0, ..., Cn−1)-essential relation R of any arity greater than 2. For PC
subuniverses we additionally require the relation to be subdirect.

Lemma 41 (Lemma 7.27, [15]). Suppose Ci is a non-trivial binary absorbing subuniverse
of Di with a term T for all i ∈ {0, 1, 2, ..., n} and n > 1. Then V 1 proves that there does
not exist a (C0, ..., Cn−1)-essential solution set RTheta ≤ D0 × ...×Dn−1.

Proof. Suppose that such solution set RΘ to some CSP instance over ΓA exists. Consider
two solutions, H1 ∈ (D0×C1× ...×Cn−1)∩R and H2 ∈ (C0×C1× ...×Dn−1)∩R. Then
usepol2(T,H1, H2) is a new solution to Θ and it is in C0 × ...× Cn−1.

Lemma 42 (Lemma 6.11, [16]). Suppose Ci is a central subuniverse of Di for all i ∈
{0, 1, 2, ..., n} and n > 2. Then V 1 proves that there does not exist a (C0, ..., Cn−1)-
essential solution set RΘ ≤ D0 × ...×Dn−1.

Lemma 43 (Corollary 7.13.3, [15]). Suppose Ci is a PC subuniverse of Di for all i ∈
{0, 1, 2, ..., n} and n > 2. Then V 1 proves that there does not exist a (C0, ..., Cn−1)-
essential subdirect solution set RΘ ≤ D0 × ...×Dn−1.

For our purposes, the last two lemmas can be proved by an exhaustive search. For
any subuniverses D0, D1, D2 of the fixed algebra A = (A,Ω), for any of their central /PC
subuniverses C0, C1, C2 and for any subalgebras R of D0 ×D1 ×D2 check that R is not
(C0, C1, C2)-essential or (C0, C1, C2)-essential and subdirect. For relations of higher arity
just consider a projection for any of its three coordinates.

The following three lemmas about the interaction of subuniverses of different types
are formulated for an arbitrary algebra D, i.e. for example, they can be used for D =
D0 × ...×Dn−1 and its subuniverses R1 and R2. For these cases, we can think about D
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as of a domain set, and about B1 and B2 as of reductions D(i)
0 × ...×D

(i)
n−1 or solution sets

RΘ. Sometimes we consider D = RΘ ≤ D0× ...×Dn−1 and B1 = RΘ∩D
(⊥)
0 × ...×D(⊥)

n−1,
B2 = RΘ ∩D

(⊤)
0 × ...×D(⊤)

n−1, where D(⊥), D(⊤) are reductions of some (different) types.
The proof of these lemmas is based on simple universal algebra reasoning, and in the
presence of all third-order objects, their formalization in W 1

1 does not differ much from
[15], [16].

Lemma 44 (Lemma 7.28, [15], Lemma 6.25). Suppose B1 is a binary absorbing, central,
or linear subuniverse of D, B2 is a subuniverse of D. Then B1∩B2 is a binary absorbing,
central, or linear subuniverse of B2, respectively.

Lemma 45 (Lemma 7.29, [15]). Suppose B1 and B2 are non-empty one-of-four subuni-
verses of D, B1 ∩B2 = ∅. Then B1 and B2 are subuniverses of the same type.

Lemma 46 (Theorem 7.30, [15]). Suppose B1 and B2 are one-of-four subuniverses of D
of types T1 and T2. Then B1 ∩B2 is a one-of-four subuniverse of B2 of type T1.

The following lemma is proved by induction and is used for third-order objects, namely
for reductions in strategies.

Lemma 47 (Lemma 7.31, [15]). Suppose A0 = B0, s ≥ 1, t ≥ 0, Ai is a one-of-four
subuniverse of Ai−1 for every i ∈ {1, ..., s}, and Bi is a one-of-four subuniverse of Bi−1
for every i ∈ {1, ..., t}. Then W 1

1 proves that As ∩ Bt is a one-of-four subuniverse of
As−1 ∩Bt of the same type as As.

Proof. The proof of the claim goes by induction on s+ t. If t = 0, then the claim follows
from the statement. If t ≤ 1, then by the inductive assumption, As−1 ∩Bt and As ∩Bt−1
are both one-of-four subuniverses of As−1 ∩Bt−1, and the second one is of type T . Then
by Theorem 46 their intersection As ∩ Bt is a one-of-four subuniverses of As−1 ∩ Bt of
type T .

We will formalize the proof for the specific case that we further need in the proofs
of auxiliary lemmas about strategies. Suppose that A0 = B0 = RΘ ≤ D0 × ... × Dn−1
for some CSP instance Θ with domain set D, where RΘ is its solution set, and for each
i ∈ {1, ..., s},

Ai = RΘ ∩D
(i)
0 × ...×D

(i)
n−1

where D = D(0), D(1), ..., D(s) is some strategy for Θ, and analogously, for each i ∈
{1, ..., t},

Bi = RΘ ∩D
(i)′

0 × ...×D(i)′

n−1

for some (other) strategy D = D(0)′
, D(1)′

, ..., D(t)′ for Θ. Recall that we can formalize any
strategy by one set ΘStr < ⟨nl, instsize(n, l)⟩. By Corollaries 2, 5 and Lemmas 33, 40 we
know that W 1

1 proves that Ai is a one-of-four subuniverse of Ai−1 and Bi is a one-of-four
subuniverse of Bi−1. Since in any step we reduce at least one domain, the number of steps
t, s cannot be greater than nl and t + s < 2nl. This induction is available in W 1

1 : the
formula itself is Σ1,b

0 , but in the proof of the induction step we use the results proved in
W 1

1 .

Lemma 48 (Lemma 7.32, [15]). Suppose RΘ ⊆ A0 ×B0 is a subdirect relation, Bi is a
one-of-four subuniverse of Bi−1 for every i ∈ {1, 2, ..., s}, A1 is a one-of-four subuniverse
of A0. Then W 1

1 proves that pr1(RΘ∩(A1×Bs)) is a one-of-four subuniverse of pr1(RΘ∩
(A1 ×Bs−1)) of the same type as Bs.
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Proof. The statement of this lemma will eventually be used in the proof of Lemma 8.28
[15], which is used further for constraints and subconstraints in proofs of Theorem 36 and
Theorem 37. So we will formalize the proof of the lemma for one specific case of Lemma
8.28 [15]. Consider some subdirect solution set RΘ ≤ D0× ...×Dn−1 (for constraints and
projections the reasoning is similar). Let D = D(0), D(1), ..., D(s) be some strategy for Θ,
and set for i = 0, 1

Ai = pr0,1,...t−1(D(i)
0 × ...×D

(i)
t−1 ×Dt × ...×Dn−1),

and for i = 0, ..., t

Bi = prt,t+1,...n−1(D0 × ...×Dt−1 ×D(i)
t × ...×D

(i)
n−1).

Then by Corollaries 2, 5 and Lemmas 33, 40, W 1
1 proves that RΘ ∩ (A0×Bi) is a one-of-

four subuniverse of RΘ ∩ (A0 ×Bi−1) of the same type as Bi, and RΘ ∩ (A1 ×B0) is a
one-of-four subuniverse of RΘ. By Lemma 48, RΘ∩(A1×Bs) is a one-of-four subuniverse
of RΘ∩(A1×Bs−1) of the same type as Bs. Consider a congruence Cσ on RΘ∩(A1×B0)
such that two elements are equivalent whenever their projections on the second coordinate
are equal,

Cσ(H1, H2) ⇐⇒ ∀t ≤ i < n, H1(i) = H2(i).

Note that this is Σ1,b
0 definition. Then for every coordinate i = 0, 1, Stable1(RΘ ∩ (A1 ×

Bt), Cσ), which means that if RΘ ∩ (A1 ×Bt) contains one element of the block of Cσ,
then it contains the entire block. We now need Lemma 7.26 from [15], which is used just
once in this proof. Therefore, we will formalize it only for this specific case as a claim.

Claim 5. Suppose Cσ is a congruence on RΘ ∩ (A1 ×B0), RΘ ∩ (A1 ×Bt) is a one-of-
four subuniverse of RΘ ∩ (A1 ×B0) stable under Cσ. Then W 1

1 proves that {H/Cσ|H ∈
RΘ ∩ (A1 ×Bt)} is a one-of-four subuniverse of RΘ ∩ (A1 ×B0)/Cσ of the same type as
RΘ ∩ (A1 ×Bt).

The proof of the claim is as in [15]. The statement follows immediately from the
claim.

3.3.1.6 Some technical lemmas

In the following two lemmas, Θ(z) is the set of all a ∈ Dz such that there is a solution to
Θ with z = a. Analogously, Θ(1)(z) is the set of all a ∈ D(1)

z such that there is a solution
to Θ(1) with z = a.

Lemma 49 (Lemma 8.1, [15]). Suppose D(1) is a one-of-four reduction for an instance
Θ of type T , which is not of the PC type. Then W 1

1 proves that Θ(1)(z) is a one-of-four
subuniverse of Θ(z) of type T for every variable z.

Proof. Consider a CSP instance Θ on n domains and its solution set RΘ. Since RΘ is
preserved by ω, Θ(i) is a subuniverse of Di for every i, and by the definition of reductions,
D

(1)
i is a subuniverse of type T . Thus, by Lemma 44, Θ(i) ∩ D(1)

i is a subuniverse of
Θ(i) of type T for every i < n. Consider the reduction Θ′ of Θ to the domain set
[Θ(0), ...,Θ(n− 1)], RΘ′ is a subdirect relation. Then, by Corollaries 3, 4 and Lemma 39,
Θ(1)(z) is a one-of-four subuniverse of Θ(z) of type T .

Lemma 50 (Lemma 8.2, [15]). Suppose D(1) is a PC reduction for a 1-consistent instance
Θ, for every variable y appearing at least twice in Θ the pp-formula Θ(y) defines Dy and
Θ(z) defines Dz for a variable z. Then V 1 proves that Θ(1)(z) is a PC subuniverse of Dz.
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Proof. For the proof, we first rename all variables in Θ so that every variable occurs just
once. This instance is denoted as Θ0. Then, step by step, we identify each two variables
back to obtain the original instance, by the sequence Θ0,Θ1, ...Θs = Θ. We show that
these transformations can be held in V 1.

Recall that we are allowed to have only one constraint relation for any two variables
x, y (in that order). That is, for instance Θ with n variables, the number of possible
constraints that involve one variable is at most (2n − 1) (and the number of all possible
constraints is at most n2). First, define the set of all variables that occur in Θ more than
once:

∀x < n, S(x) ⇐⇒ ∃y ̸= z < n, (EX (x, y) ∨ EX (y, x)) ∧ (EX (x, z) ∨ EX (z, x)). (3.161)

Note that if we have two edges of the form EX (x, y), EX (y, x), we need to rename one x
to x′ and one y to y′, and do it at different steps. To perform this, we further define two
sets of variables for any such x, Sin, Sout:

∀x, y < n, Sout(x, y) ⇐⇒ S(x) ∧ EX (x, y),
∀x, z < n, Sin(x, z) ⇐⇒ S(x) ∧ EX (z, x).

(3.162)

When we rename every occurrence of a variable x, we can get at most 2n new variables
(there are at most (2n−1) constraints with x, and one of them could be a loop EX (x, x)).
It works for every of n variables, so the maximal number of steps is 2n2. We now set
s = 2n2, Θs = Θ, Ss = S, Souts = Sout, Sins = Sin, and then for any t = 1, ..., 2n2 we will
define a new CSP instance Θs−t based on the following rules. If the set Ss−(t−1) is empty
(neither of the variables occurs at least twice) we just replicate the instance Θs−(t−1).
Otherwise, for odd t, we consider the set Sin(s−(t−1)) (and for even the set Sout(s−(t−1))). If it
is empty, replicate the instance and move on. If not, choose elements x, y such that ⟨x, y⟩
is the minimum element of Sin(s−(t−1))(x, y). Rename a variable x in that constraint by the
next number after the maximum element in VXs−(t−1) . For this construction, for each odd
step t we consider additional sets L(s−(t−1)) and R(s−(t−1)), defined as follows:

L(s−(t−1))(x) ⇐⇒ ∃y < max(VXs−(t−1)) + 1, min(Sin(s−(t−1))) = ⟨x, y⟩,
R(s−(t−1))(y) ⇐⇒ ∃x < max(VXs−(t−1)) + 1, min(Sin(s−(t−1))) = ⟨x, y⟩.

(3.163)

Now we are ready to define an instance digraph for step t:

∀x < max(VXs−(t−1)) + 1, VXs−t(x) ⇐⇒ VXs−(t−1)(x),
VXs−t(max(VXs−(t−1)) + 1)

∀x, y < max(VXs−(t−1)) + 1, EXs−t(x, y) ⇐⇒ EXs−(t−1)(y, x)∧
∧(¬L(s−(t−1))(x) ∨ ¬R(s−(t−1))(y))

EXs−t(y,max(VXs−(t−1)) + 1) ⇐⇒ L(s−(t−1))(x) ∧R(s−(t−1))(y).

(3.164)

In parallel, we define a target digraph Äs−t by adding there a new domain Dmax(VXs−(t−1) )

+1 equal to Dx for a new variable max(VXs−(t−1))+1 and EyxÄ as a constraint for a new edge
EXs−t(y,max(VXs−(t−1)) + 1). Eventually, we will get an instance Θ0. Since we consider
all sets in a particular order and address only sets from the previous step t−1, all of them
exist by Σ1,b

1 induction.
The proof of the statement then goes by induction on s, and the implication s→ s+ 1

follows from the reasoning that can be easily formalized in V 1. We refer the reader to the
source [15].
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For a relation R of arity n denote by UnPolR the set of all unary vector functions
preserving the relation R. For a solution set RΘ for some CSP instance Θ, due to (3.96)

Ψ ∈ UnPolRΘ ⇐⇒ V ecFun(RΘ,Ψ), (3.165)

which is a Π1,b
1 -formula. For every map H from [n] to [D0, ..., Dn−1], and every unary

vector function Ψ, we can define a map Ψ(H) using bit-definition:

Ψ(H)(⟨i, ⟨i, a⟩⟩) = HΨ(⟨i, ⟨i, a⟩⟩) ⇐⇒ ∃b ∈ Di, H(⟨i, ⟨i, b⟩⟩) ∧Ψ(i, b, a). (3.166)

Lemma 51 (Lemma 8.12, [15]). Suppose a pp-formula Λ(x0, ..., xn−1) defines a relation
RΛ, H ∈ Dx0 × ...×Dxn−1, and R′ = {HΨ : Ψ ∈ UnPolRΛ}. Then W 1

1 proves that there
exists Υ ∈ Covering(Λ) such that Υ(x0, ..., xn−1) defines R′.

Proof. The idea of the universal algebra proof is the following. Consider any relation R
on n variables. Suppose that there are l elements in each domain, d0, ..., dl−1. Then the
formula

S(xd0
0 , ..., x

dl−1
0 , ..., xd0

n−1, ..., x
dl−1
n−1) =

⋀︂
(b0,...,bn−1)∈R

R(xb0
0 , ..., x

bn−1
n−1 )

expresses that the vector-function preserves R (we think about xbi
i as about xi being

sending to bi). Then, if we consider any tuple α = (a0, ..., an−1), the projection of S to
xa0

0 , ..., x
an−1
n−1 defines the relation {f(α) : f ∈ UnPolR}.

We will consider Λ as a CSP instance on n variables, |VXΛ | = n (for projections the
reasoning is analogous). Suppose that for some a0, ..., an−1, for all i < n, H(i) = ⟨i, ai⟩.
We need to define a new CSP instance Υ such that the projection of its solution set to
some subset of vertices is exactly R′. Consider a CSP instance Υnull on nl variables,
where for i < n, a < l we think about vertex il+a as about vertex i that was sent to ⟨i, a⟩
(or if we use labels, xi → a ∈ Di). Then for every H ′ ∈ RΛ such that for i < n, bi < l,
H ′(i) = ⟨i, bi⟩ we copy instance Λ to domains Db0 , Dl+b1 , D2l+b2 , ..., D(n−1)l+bn−1 . Denote
the resulting instance by Υ. It is clear that Υ ∈ Covering(Λ). Then the projection
R
a0,l+a1,...,(n−1)l+an−1
Υ defines R′.

The algorithm of the construction is clear, but to perform it we need the number
of steps that is bounded only by ln (the number of possible homomorphisms from [n]
to [D0, ..., Dn−1]). Since every homomorphism H is expressed by a string of length
⟨n, ⟨n, l⟩⟩ < n4, we encode the number of steps by strings ∅ < T < n4 of length up
to n4, run the algorithm (if T represents some homomorphism to the instance Λ, copy
Λ to corresponding domains), and then use ΣB

1 -induction to show that such instance ex-
ists.

Corollary 7 (Corollary 8.12.1, [15]). Suppose a pp-formula Λ(x0, ..., xn−1) defines a re-
lation RΛ without a tuple H ∈ Dx0 × ... ×Dxn−1, Σ is the set of all relations defined by
Υ(x0, ..., xn−1) where Υ ∈ Covering(Λ), and RΛ is an inclusion-maximal relation in Σ
without the tuple H. Then W 1

1 proves that H is a key tuple for RΛ.

Proof. Consider Λ as a CSP instance on n variables, let S be any map from [n] to
[D0, ..., Dn−1] that is not in RΛ. Then by Lemma 51 the set of maps R′ = {SΨ : Ψ ∈
UnPolRΛ} is a projection of the solution set to some Υ ∈ Covering(Λ). Since Ψ can be
constant mapping to a homomorphism of Λ and identity mapping, RΛ ⊊ R′, and since
RΛ is inclusion-maximal, H ∈ R′. By the definition, H is a key tuple for RΛ.

Lemmas we consider next in this section are
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1. either related exclusively to binary relations since we consider languages with at
most binary constraint relations,

2. or are used in the further proofs only for constant arity relations,

3. or related to constant arity relations and constant sizes over algebra A.

In the first and the second cases, they can be formalized and proved in V 1 exactly as they
are proved in [15]. In the third case, such properties must be listed in the A-Monster set.
For these reasons, we will mention a few examples, but for the proofs and the rest, we
refer the reader to the source [15].

Lemma 52 (Lemma 7.19, [15]). Suppose R ⊆ D × B × B is a subdirect relation, D is
a PC algebra without a non-trivial binary absorbing or central subuniverse, and for every
b ∈ B there exists a ∈ A such that (a, b, b) ∈ R. Then V 1 proves that for every a ∈ A
there exists b ∈ B such that (a, b, b) ∈ R.

The following two lemmas are formulated in [15] for t variables, but then they are
only used for relations on one and two variables, so instead of using induction on t we can
consider just cases Θ(x0) and Θ(x0, x1).

Lemma 53 (Lemma 8.3, [15]). Suppose D(1) is a minimal absorbing, central or linear
reduction for an instance Θ, and Θ(x0, x1) defines a full relation. Then Θ(1)(x0, x1) defines
a full or empty relation.

Lemma 54 (Lemma 8.4, [15]). Suppose D(1) is a minimal PC reduction for a 1-consistent
instance Θ. For every variable y appearing at least twice in Θ the pp-formula Θ(y) defines
Dy and Θ(x0, x1) defines a full relation. Then Θ(1)(x0, x1) defines a full or empty relation

The next examples of technical lemmas are the following.

Lemma 55 (Lemma 8.10, [15]). Suppose R ≤ Di × Dj is a critical rectangular binary
relation, and R′ is a cover of R. Then V 1 proves that Con(R,i)

2 ⊊ Con
(R,i)
2 .

Lemma 56 (Theorem 8.15, [15]). Suppose R ≤ D4 is a strongly rich relation preserved
by an idempotent WNU. Then V 1 proves that there exists an abelian group (D,+) and
bijective mappings ϕ0, ϕ1, ϕ2, ϕ3 : D → D such that

R = {(x0, x1, x2, x3) : ϕ0(x0) + ϕ1(x1) + ϕ2(x2) + ϕ3(x3) = 0}.

Lemma 57 (Theorem 8.17, [15]). Suppose σ ⊆ D2 is a congruence, ρ is a bridge from σ
to σ such that ρ̃ is a full relation, pr1,2(ρ) = ω, ω is a minimal relation stable under σ
such that σ ⊊ ω. Then V 1 proves that there exists a prime number p and a relation ζ ⊆
D×D×Zp such that pr1,2ζ = ω and (a1, a2, b) ∈ ζ implies that (a1, a2) ∈ σ ⇐⇒ (b = 0).

Lemma 58 (Lemma 8.18, [15]). Suppose ρ ⊆ D4 is an optimal bridge from σ1 to σ2, and
σ1 and σ2 are different irreducible congruences. Then V 1 proves that σ2 ⊆ ρ̃.

Lemma 59 (Lemma 8.20, [15]). Suppose R ≤ Di×Dj is a subdirect rectangular relation,
and there exist (bi, aj), (ai, bj) ∈ R such that (ai, aj) /∈ R. Then V 1 proves that there exists
a bridge δ from Con

(R,i)
2 to Con(R,j)

2 such that δ̃ = R.

These and some other lemmas imply the following result about CSP instances. Recall
that cycle-consistency is formalized by Π1,b

2 -formula, and Linked[i,i,Θ] is a Σ1,b
1 -relation,

see Chapter 2 (ref. [6]).
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Lemma 60 (Lemma 8.22, [15]). Suppose Θ is a cycle-consistent connected instance. Then
V 1 proves that for any constraints C,C ′ with variables x, x′ there exists a bridge δ from
Con(C,x) to Con(C′,x′) such that δ̃ contains all pairs of elements linked in Θ. Moreover, if
Con(C′′,x′′) ̸= Linked[x′′,x′′,Θ] for some constraint C ′′ ∈ Θ and a variable x′′, then δ can be
chosen so that δ̃ contains all pairs of elements linked in Θ′, where Θ′ is obtained from Θ
by replacing every constraint relation by its cover.

The next lemma is proved easily by the application of the definition of the crucial
instance and expanded covering. If we replace any constraint in a crucial instance Θ with
all weaker constraints, we get a solution. All relations in expanded covering Θ′ are either
diagonal relations or weaker or equivalent to relations in Θ.

Lemma 61 (Lemma 8.24, [15]). Suppose ΘX = (X , Ä) is a crucial instance in D(1),
ΘY = (Y, B̈) ∈ ExpCov(ΘX ) via the homomorphism H from Y to X , and ΘY has no
solution in D(1). Then V 1 proves that for every constraint Exixj

Ä in ΘX there exists a
constraint Eykyp

B̈ such that H(yk) = xi, H(yp) = xj and Exixj

Ä = E
ykyp

B̈ .

Lemmas 61 and 60 imply Lemma 62.

Lemma 62 (Lemma 8.25, [15]). Suppose ΘX = (X , Ä) is a crucial instance in D(1),
ΘY = (Y, B̈) ∈ ExpCov(ΘX ) has no solution in D(1), every constraint relation of ΘX is a
critical rectangular relation, and ΘY is connected. Then V 1 proves that ΘX is connected.

3.3.2 Formalization of the main theorems

3.3.2.1 The existence of the next reduction

Lemma 63 (Lemma 9.1, [15]). Suppose D(0), D(1), ..., D(s) is a strategy for a 1-consistent
CSP instance Θ, and D(⊥) is a reduction of Θ(s). Then V 1 proves that:

1. if there exists a 1-consistent reduction contained in D(⊥) and D(s+1) is maximal
among such reductions, then for every variable x of Θ there exists a tree-formula
Υx ∈ Coverings(Θ) such that Υ(⊥)

x (x) defines D(s+1)
x ;

2. otherwise, there exists a tree-formula Υ ∈ Coverings(Θ) such that Υ(⊥) has no
solutions.

Proof. The proof of this theorem is based on constraint propagation. At the beginning for
every variable x we consider an empty tree formula Υx. Then Υ(⊥)

x defines the reduction
D(⊥). Then the recursive algorithm works as follows: if at some step the reduction defined
by these tree formulas is 1-consistent, it stops. Otherwise, it considers any constraint
C = R(x1, ..., xt) that breaks 1-consistency. The current restrictions of variables x1, ..., xt
in C imply stronger restriction of some variable xi, and the algorithm changes the formula
Υxi as follows:

Υxi =def C ∧Υx1 ∧ ... ∧Υxt .

To keep the formula Υxi tree, any time the algorithm joins Υxj and Υxk
it renames the

variables so that they do not have common variables. Finally, for each Υxj we consider the
reduction of this instance on the domain set D(⊥). Projection of the solution set to Υ(⊥)

xj

on variable xj , Υ(⊥)
xj (xj) defines D(s+1)

xj . That will be a maximal 1-consistent reduction
since it is defined by tree-formulas.

Let us formalize this algorithm. The formalization is based on a 1-consistency algo-
rithm (see [1]). Recall that any CSP instance can be converted in polynomial time to
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a 1-consistent one with the same set of solutions. Moreover, any implementation of a
1-consistency algorithm derives the same unary constraints. Thus, we can first define re-
cursive sets of edges and vertices, based on which we can construct our tree formulas.

For the steps t = 0, t = 1 for any i, j < n we set
EijÄ,0(a, b) ⇐⇒ EijÄ(a, b),

EijÄ,1(a, b) ⇐⇒ a ∈ D(⊥)
i ∧ b ∈ D(⊥)

j ∧ EijÄ(a, b).
(3.167)

For any further step t > 1 we will propagate constraints recursively until we cannot
change any domain further (i.e. until the instance is 1-consistent) or some domain is
empty. For any i, j < n we set:

EijÄ,t(a, b) ⇐⇒
[︁
(∀p, r < n,∃e, f < l, EX (p, r)→ EprÄ,t−1(e, f))∧

∧EijÄ,t−1(a, b) ∧ ∀q < n, EX (i, q)→ ∃d ∈ D(⊥)
q , EiqÄ,t−1(a, d)∧

∧∀k < n, EX (k, i)→ ∃c ∈ D(⊥)
k , EkiÄ,t−1(c, a)∧

∧∀q < n, EX (j, q)→ ∃d ∈ D(⊥)
q , EjqÄ,t−1(b, d)∧

∧∀k < n, EX (k, j)→ ∃c ∈ D(⊥)
k , EkjÄ,t−1(c, b)

]︁
∨

∨
[︁
(∃p, r < n,∀e, f < l, EX (p, r) ∧ ¬EprÄ,t−1(e, f)) ∧ EijÄ,t−1(a, b)

]︁
.

(3.168)

The expression in the first square brackets holds when neither of the relations at the
previous step is empty, and the expression in the second square brackets holds otherwise
(it would mean that some domain of the instance at this step is already empty). In both
cases after some step t the relation set EijÄ,t−1 stops changing. The maximal number of
edges in a directed graph with loops on n vertices is n2. Therefore, the maximal number
of edges in the instance Θ is n2l2 and since at each step we reduce some relation at least
by one edge, it is enough to consider at most n2l2 steps. Moreover, since we remove an
edge if at least one of its endpoints a ∈ D(⊥)

i violates 1-consistency (so within one step we
remove all edges in EijÄ,t−1 connected with a for all j < n), the actual number of steps is nl
(the number of elements). The existence of this set is ensured by Σ1,b

1 -induction: consider
the formula

ϕ(t) = ∃EÄ < ⟨t, ⟨⟨n, l⟩, ⟨n, l⟩⟩⟩, ∀i, j < n, ∀a, b < l, EijÄ,1(a, b)↔ (3.167)∧

∧∀1 < p < t, ∀i, j < n,∀a, b < l, EijÄ,p(a, b)↔ (3.168).
(3.169)

Since (3.168) is a Σ1,b
0 -formula, to provide the implication ϕ(t) → ϕ(t + 1) we can use

comprehension axiom Σ1,b
0 -CA.

Note that in (3.168) we do not need to track the domain’s changes separately (they
are all recorded in the relations EijÄ,t). We will proceed with recursive propagation of the
domain set VÄ after this procedure based on the resulting relation set. For any i < n, for
steps t = 0, t = 1 we set

VÄ,0(i, a) ⇐⇒ Di(a),

VÄ,1(i, a) ⇐⇒ D
(⊥)
i (a),

(3.170)

and for all 1 < t < nl

VÄ,t(i, a) ⇐⇒ VÄ,
t−1(i, a) ∧ (∀j < n, EX (i, j)→ (∃b < l, VÄ,

t−1(j, b)∧

∧EijÄ,t(a, b))) ∧ (∀k < n, EX (k, i)→ (∃c < l, VÄ,t−1(k, c)∧

∧EkiÄ,t(c, a))).
(3.171)
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Again, this set exists due to Σ1,b
1 -induction. Note that in (3.171) for the step t < nl we use

EÄ,t−1 and not EÄ,nl: we need recursive changing of the domains for further reconstruction
of the tree formulas Υi. We also define a set C listi that for any step 0 < t < nl collect
elements that were deleted from VÄ,t,i:

∀0 < t < nl, ∀a < l, C listi (t, a) ⇐⇒ VÄ,t−1(i, a) ∧ ¬VÄ,t(i, a). (3.172)

Further, we need to construct tree-instances Υi. We want them to be coverings, so for
each i we only need to define an instance graph Xi and remember parents for renamed
variables. To do it, we again use recursion. For each i < n, we start with an instance Υi,0
with a domain set D and with an empty set of constraints. Then for further steps u we:

• either do nothing with instance Υi,u - if for any k < n and for some t constraints EikÄ,t
and EkiÄ,t that violate 1-consistency do not imply stronger restriction of a domain
Di,

• or we need to consider a union of two CSP instances (that corresponds to the inter-
section of their constraints) for every constraint EijÄ,t (or EjiÄ,

t
) restricting domain

Di, namely
Υi,u := EijÄ ∧Υi,u−1 ∧Υj,u−1.

Note that while our next move depends on reduced by the step constraint EikÄ,t, to the
instance Υi,u we add original constraint EikÄ . After we add enough such constraints and
previous instances, the reduction of the resulted instance Υi,u to D(⊥) will give us the
same projection to the coordinate Di as it gives (3.171).

Also note that if two constraints at step t reduce domain Di by the same values, we
do not need to and we will not construct both intersections. Recall that when joining any
two Υi,t−1,Υj,t−1 we have to rename all variables to retain the instances tree. Since we
have at most binary relations and for any two variables there can be only two constraints
containing them, namely EijÄ and EjiÄ , at the first step of the recursion process, we can
add to each Υi,1 at most 2n new vertices (if for every j < n there are both EX (i, j) and
EX (j, i)). Then for every new constraint restricting at step t, we can at most double the
number of variables of the largest instance of step (t − 1). Still, it will not make sense
after the first l intersections for every Υi since in this case we will get an empty domain
set Di and thus justify the case 2 of the theorem. Thus, even if we start with instances
Υi,1 on 2n variables, after l intersections we will not need more than 2l2n variables.

First, for every Υi,0, define VXi,0 as a set of length 2l2n that contains only one element
i, and EXi,0 as an empty set of length ⟨2l2n, 2l2n⟩. By VÄi,0 denote the set of length
⟨2l2n, l⟩, with only one non-empty domain VÄi,0 = Di. By EÄi,0 denote an empty set of
length ⟨⟨2l2n, l⟩, ⟨2l2n, l⟩⟩.
Remark 14. Strictly speaking, we are not allowed to use empty sets of some length. But we
can bypass it by choosing a set, for example, for VXi,0 with two elements, i, and that we will
never properly use, 2l2n + 1. Further, we also consider the number function max′(VXi,u)
with the following value:

max′(VXi,u) = m ⇐⇒ m ̸= 2l2n+ 1 ∧ ∀u ∈ VXi,u, (u ̸= 2l2n+ 1→ u ≤ m). (3.173)

We construct Υ0,...,Υn−1 simultaneously. The entire construction takes 0 < u < 2n(nl)
steps. Each Υi,u consists of
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• set VXi,u, representing the current number of vertices,

• set EXi,u, representing the current set of edges,

• set VÄi,u
, representing domains for current variables,

• set EÄi,u
, representing constraint relations for current variables,

• and set Cerasei,u that keeps track of elements that must be deleted from the domain
Di during each outer step t and erases them one by one if we need to change the
instance Υi,u.

We consider these sets in the above order. The description of the algorithm is as follows.
For every Υi, within any step 1 < t < nl we run 2n internal steps. At the beginning of
each new internal iteration, for some 2nt step, we check the list C listi,t+1 for elements that
we will exclude from Di by adding new constraints to the instance during this internal
iteration. We write them down to Cerasei,2nt . For each step u = 2nt + j we consider the
constraint EijÄ,t+1 (for step 2nt + j + 1 we consider the opposite constraint EjiÄ,t+1) and
decide whether it kills any of the elements from Cerasei,2nt+j . For any a ∈ Cerasei,2nt+j it happens
when there exists at least one edge (a, b) ∈ EijÄ,t and no edges connected with a in EijÄ,t+1:

∃a ∈ Cerasei,2nt+j(∃b < l, EijÄ,t(a, b) ∧ ∀b < l, ¬EijÄ,t+1(a, b)). [formula (3.168)] (3.174)

If it is the case, we define our instance Υi,u+1 as follows: we first replicate instance Υi,u

and then add all vertices of Υj,u to part from max(VXi,u) + 1 as well as all edges of Υj,u,
and add an edge EXi,u+1(i,max(VXi,u) + 1 + j).

∀k < max′(VXi,u) + 1, VXi,u+1(k) ⇐⇒ VXi,u(k),
∀k1, k2 < max′(VXi,u) + 1, EXi,u+1(k1, k2) ⇐⇒ EXi,u(k1, k2),

∀max′(VXi,u) < k < 2l2n+ 1, VXi,u+1(max′(VXi,u) + 1 + k) ⇐⇒ VXj ,u(k),
∀max′(VXi,u) < k1, k2 < 2l2n+ 1,

EXi,u+1(max′(VXi,u) + 1 + k1,max
′(VXi,u) + 1 + k2) ⇐⇒ EXj ,u(k1, k2),

EXi,u+1(i,max′(VXi,u) + 1 + j).

(3.175)

In the same way, we define a target digraph Äi,u+1 by adding new domains for new
variables (from the list {D0, ..., Dn−1}) and EijÄ as a constraint for the new edge EXi,u+1(i,
max(VXi,u) + 1 + j).

If this is not the case, we just replicate instance Υi,u to Υi,u+1. Finally, we either
replicate the set Cerasei,u or change it to Cerasei,u+1 as follows:

∀a < l, Cerasei,(2nt+j)+1(a) ⇐⇒ Cerasei,2nt+j(a) ∧ (∃b < l, EijÄ,t+1(a, b)). (3.176)

Thus, after we pass constraint EjiÄ,t+1 we leave in Cerasei,(2nt+j)+1 those elements that will
be deleted in VÄ,t+1 but because of another constraint that will lose all edges adjacent
to them. We keep track of already deleted elements for outer step t not to intersect the
instances with constraints that kill the same set of vertices – because we want to stop after
l intersection with an empty domain.

At each step sets VXi,u, VÄi,u
, EXi,u, EÄi,u

and Cerasei,u address to themselves and
each other in previous steps. They also address to different levels of already defined set
C listi (t, a) based on VÄ,t and to EijÄ,t. The existence of them is given by Σ1,b

1 -induction. At
some point, we stop with tree-instances Υi, each of them defining D(s+1)

i on D(⊥).
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The next three theorems follow from Lemma 63 and some previous results, formalized
in W 1

1 .

Theorem 30 (Theorem 9.2, [15]). Suppose D(0), D(1), ..., D(s) is a strategy for a cycle-
consistent CSP instance Θ. Then W 1

1 proves that:

1. if D(s)
x has a non-trivial binary absorbing subuniverse B then there exists a 1-

consistent absorbing reduction D(s+1) of Θ(s) with D(s+1)
x ⊆ B;

2. if D(s)
x has a non-trivial central subuniverse C then there exists a 1-consistent central

reduction D(s+1) of Θ(s) with D(s+1)
x ⊆ B;

3. if D(s) has no non-trivial binary absorbing or central subuniverse for every y but
there exists a non-trivial PC subuniverse B in D

(s)
x for some x, then there exists a

1-consistent PC reduction D(s+1) of Θ(s) with D(s+1)
x ⊆ B.

Theorem 31 (Theorem 9.3, [15]). Suppose that D(0), D(1), ..., D(s) is a strategy for a 1-
consistent CSP instance Θ, and D(⊥) is a non-linear 1-consistent reduction of Θ(s). Then
W 1

1 proves that there exists a 1-consistent minimal reduction D(s+1) of Θ(s) of the same
type such that D(s+1)

i ⊆ D(⊥)
i for every variable i.

Theorem 32 (Theorem 9.4, [15]). Suppose D(⊥) is a 1-consistent PC reduction for a
cycle-consistent irreducible CSP instance Θ, Θ is not linked and not fragmented. Then
W 1

1 proves that there exist a reduction D(1) of Θ and a minimal strategy D(1), ..., D(s) for
Θ(1) such that the solution set to Θ(1) is subdirect, the reductions D(2), ..., D(s) are non-
linear, D(s)

x ⊆ D(⊥)
x for every variable x.

3.3.2.2 Main theorems proved by induction

In this section we consider the main five theorems, proved simultaneously by induction on
the size of the domain set (to be defined further). We will not consider the formalization
of their proofs since it is based on the formalization of previous results. However, some
reasoning from the proofs is used for the formalization of the theorems.
Remark 15. We will use the same notation D(s) for the reductions of the initial instance,
its subinstances, subconstraints, differences, unions, and both coverings and expanded
coverings to avoid unnecessary indices. These, of course, cannot be the same sets of
domains, but once givenD(s) for an instance ΘX we can easily construct a similar reduction
for any of these objects, denoted by ΘY , under the simple rule

∀xi∀yj , Dxi = Dyj =⇒ D(s)
xi

= D(s)
yj
.

This is well-defined since we can additionally require in the reduction D(s) of instance ΘX
that equal domains be reduced to equal domains (see 3.57). In a minimal 1-consistent
one-of-four reduction, every D(s)

xi must be minimal by inclusion.

Theorem 33 (Theorem 9.5, [15]). Suppose D(1) is a minimal 1-consistent one-of-four re-
duction of a cycle-consistent irreducible CSP instance Θ, Λ(x0, ..., xn−1) is a subconstraint
of Θ, the solution set to Λ(1) is subdirect, Θ\Λ has a solution in D(1), and Θ has no
solutions in D(1). Then W 1

1 proves that there exist instances Υ1, ...,Υt ∈ Coverings(Λ)
such that Φ = (Θ\Λ) ∪ Υ1 ∪ ... ∪ Υt has no solutions in D(1), each Υi(x0, ..., xn−1) is a
subconstraint of Φ, and Υ(1)

i (x0, ..., xn−1) defines a subdirect key relation with the parallel-
ogram property for every i.
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The formalization of the theorem will be based on its proof. Since Λ(x0, ..., xn−1) is a
subconstraint of Θ, it follows that Λ is a subinstance of Θ that involves variables x0, ...,
xn−1, y0, ..., yk−1, and Θ as an instance on variables x0, ..., xn−1, y0, ..., yk−1, z0, ..., zs−1
such that Θ\Λ involves variables x0, ..., xn−1, z0, ..., zs−1. Υi(x0, ..., xn−1) here denotes all
tuples (a0, ..., an−1) such that instance Υi has a solution with x0 = a0,...,xn−1 = an−1.
That is, it is a projection of the solution set to Υi onto coordinates x0, ..., xn−1, which can
be expressed by the formula

∃yi0...∃yimi−1Υi(x0, ..., xn−1, y
i
0, ..., y

i
mi−1).

Υ(1)
i (x0, ..., xn−1) thus expressed the projection of the solution set to the instance Υ(1)

i after
the reduction D(1). We can denote this projection using a third-order object R

x0,...,xn−1

Υ(1)
i

.
Note that when we talk not about a solution set to an instance but about projection to
the solution set, we add to the formula an additional second-sorted existential quantifier,
see (3.27).

Since both Λ and Θ\Λ have solutions in D(1), but Θ does not, it follows that Λ(1)(x0, ...,
xn−1) and Θ\Λ(1)(x0, ..., xn−1) define relations R

x0,...,xn−1
Λ(1) and R

x0,...,xn−1
Θ\Λ(1) that do not

intersect. Every solution to Λ(1) is a solution to any Υ(1) from Coverings(Λ). According to
the proof of the theorem, for every tuple Hi of the relation R

x0,...,xn−1
Θ\Λ(1) , we find an instance

Υ(1)
i such that the relation R

x0,...,xn−1

Υ(1)
i

defined by Υ(1)
i (x0, ..., xn−1) is an inclusion-maximal

relation that contains R
x0,...,xn−1
Λ(1) and does not contain Hi. Thus, Φ = (Θ\Λ)∪Υ1∪ ...∪Υt

does not have solutions in D(1), but if we replace any Υi by a weaker instance Υ that
produces a greater relation R

x0,...,xn−1
Υ(1) , we get an instance with solution Hi. That is, the

number of coverings Υ1, ...,Υt is bounded by the number of tuples in R
x0,...,xn−1
Θ\Λ(1) , which is

bounded by ln/2− |Rx0,...,xn−1
Λ(1) |. Note that we do not need to know the precise number of

Υi to write the formula; some of them can be repeated as many times as necessary. So we
stick to the bound ln, since it can be conveniently rewritten as (2n)log2l. Then, following
the reasoning from Lemma 51, we can roughly bound the number of variables in each
Υi by (n + k) + nl (we introduce a new variable xai for all i ∈ {0, ..., n − 1} and a < l).
Thus, every instance Υi can be bound by a unique number bΛ = instsize((n+ k) + nl, l).
It follows that we can encode the set of all Υ0, ...,Υ(2n) log2l by one class Y, where each
Υi is encoded by a string X of length at most nv, with v = ⌈log2l⌉, Y(X,Υ). Then
row̃(X, Y, bΛ) = Υ, which we denote as Υ[X].

Due to the assumption, each Υi is a covering for Λ on some set of variables xi0, ..., xin−1,
yi0, ..., y

i
mi−1 such that for all j < n, xij = xj . Therefore, there is a homomorphism H

from XΥi to XΛ that sends xij to xj . Each Υi is a subconstraint of Φ, hence it has
no common variables with Θ\Λ and any Υj except for x0, ..., xn−1. Recall that for the
union of instances we have the function uni well-defined by Σ1,b

0 -formula, as well as the
function dif for the difference. In the union of two instances, we add all variables of the
second instance after all variables of the first instance, shift their labels, and add equality
constraints between vertices with labels that were the same. The problem here is that
when we join Υi to (Θ\Λ)∪Υ1∪ ...∪Υi−1 we rename all the vertices and since the number
of Υi can be exponential, we have no space to represent Φ as a second-order object. We
cannot represent Φ as a third-sorted object either (with vertices labeled by strings) since
the statement that there is no solution to Φ in D(1) would be the ΠB

1 -formula. To avoid
this problem, we will not define Φ, but define the preconditions that lead to the situation
where Φ does not have a solution in D(1). By Corollary 7 these preconditions also lead to
each R

x0,...,xn−1

Υ(1)
i

being a key relation (so we do not need to write it down explicitly in the
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formula). We order all projections to x0, ..., xn−1 of solutions to an instance Θ\Λ(1) in one
class H, where each H is encoded by a string X of length at most nv, denoted H[X]. That
H[X] will correspond to Υ[X] in the sense that RΥ(1)

[X]
is an inclusion-maximal relation that

does not contain H[X]. This is reflected in square brackets in the formula.
The function redinst is definable by the Σ1,b

0 -formula and returns the reduction of an
instance on D(1). Thus,

Θ(1) = redinst(Θ, D(1))
Θ\Λ(1) = redinst(Θ\Λ, D(1))

Υ(1)
i = redinst(Υi, D

(1)).

We also cannot use the relation subConstn(Φ,Υi, X) since we cannot define Φ and tech-
nically Υi is not a subinstance of Φ. But we can explicitly write this condition for each
Υi. In the 7th line of the formula (3.177) we require that the first n variables in each Υi

be labeled exactly by x0, ..., xn−1 (we are talking about the existence), in the 8− 9th lines
we ensure that the common variables of any Υi and Θ\Λ are only x0, ..., xn−1, and in the
last two lines we require the same for each pair Υi,Υj .

The relation subD(Rx0,...,xn−1

Υ(1)
i

) is Σ1,b
1 , the relation ParlPr(Rx0,...,xn−1

Υ(1)
i

) remains Π1,b
2 .

Relations min1of4Red(D(1), D), 1C(Θ(1)) and subConstn(Θ,Λ, x0, ..., xn−1) are described
by Σ1,b

0 formulas, relations subDSSInst(Λ(1)), Cov(Υi,Λ) and HOM¨ (XΘ\Λ(1) , ÄΘ\Λ(1))
are Σ1,b

1 , relation ¬HOM¨ (XΘ(1) , ÄΘ(1)) becomes Π1,b
1 , and CCInst(Θ) and IRDInst(Θ)

are Π1,b
2 -formulas. This gives us the ΣB

1 -formula.

T9.5(Θ, D(1),Λ, X) :=
(︁
CCInst(Θ) ∧ IRDInst(Θ) ∧min1of4Red(D(1), D)∧

∧1C(Θ(1)) ∧ subConst(Θ,Λ, X) ∧ subDSSInst(Λ(1))∧
∧HOM¨ (XΘ\Λ(1) , ÄΘ\Λ(1)) ∧ ¬HOM¨ (XΘ(1) , ÄΘ(1))

)︁
=⇒ ∃H∃Y∀X < nv,[︁

Cov(Υ[X],Λ) ∧H[X] ∈ R
x0,...,xn−1
Θ\Λ(1) ∧H[X] /∈ R

x0,...,xn−1

Υ(1)
[X]

∧ ∀Υ < bΛ

(Cov(Υ,Λ) ∧ R
x0,...,xn−1

Υ(1)
[X]

⊊ R
x0,...,xn−1
Υ(1) ))→ H[X] ∈ R

x0,...,xn−1
Υ(1) )

]︁
∧

∧∀X < nv, subDSSInst(Rx0,...,xn−1

Υ(1)
[X]

) ∧ ParlPr(Rx0,...,xn−1

Υ(1)
[X]

)∧

∧∀X < nv,∀j < n, VXΥ[X]
(j, xj)∧

∧∀X < nv,∀r < (s+ n), ∀g < bn+s,∀p < (n+ k) + nl,

VXΘ\Λ(r, g) ∧ VXΥ[X]
(p, g)→ (g = x0 ∨ ... ∨ g = xn−1)∧

∧∀X < nv,∀X ′ < nv,∀r, p < (n+ k) + nl,∀g < b(n+k)+nl,

VXΥ[X]
(r, g) ∧ VXΥ[X′]

(p, g)→ (g = x0 ∨ ... ∨ g = xn−1)∧

(3.177)

Theorem 34 (Theorem 9.6, [15]). Suppose D(1) is a minimal 1-consistent one-of-four
reduction of a cycle-consistent irreducible CSP instance Θ, Θ is crucial in D(1) and is not
connected. Then W 1

1 proves that there exists an instance Θ′ ∈ ExpCov(Θ) that is crucial
in D(1) and contains a linked connected component whose solution set is not subdirect.

To formalize this theorem, we first have to formalize some additional notions used in
its proof since we need a bound on the instance Θ′. For every variable x of instance Θ,
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all constraints of which are critical and rectangular, we assign the pair of sets ξΘ,x =
(ΣΘ,1

Dx
,ΣΘ,2

Dx
) such that for all i < 2l2 and a, b < l

ΣΘ,1
Dx

(i, a, b) ⇐⇒ ΣDx(i, a, b) ∧
(︁
(∃y < n, ∀a′, b′ < l,

Con
(Θ,x)
2 (0, y, a′, b′)↔ ΣDx(i, a′, b′))∧

∧(∀z ̸= y < n, (EX (x, z)→ Con
(EX (x,z),x)
2 ̸⊆ ΣDx,i∧

∧EX (z, x)→ Con
(EX (z,x),x)
2 ̸⊆ ΣDx,i))

)︁
∨(︁

(∃y < n, ∀a′, b′ < l, Con
(Θ,x)
2 (y, 0, a′, b′)↔ ΣDx(i, a′, b′))∧

∧(∀z ̸= y < n, (EX (x, z)→ Con
(EX (x,z),x)
2 ̸⊆ ΣDx,i∧

EX (z, x)→ Con
(EX (z,x),x)
2 ̸⊆ ΣDx,i))

)︁
.

(3.178)

and
ΣΘ,2

Dx
(i, a, b) ⇐⇒ ΣΘ,1

Dx
(i, a, b) ∧ ∀j < 2l2

(j ̸= i ∧ ΣΘ,1
Dx,j
̸= ∅ → ¬Adj(ΣΘ,1

Dx,i
,ΣΘ,1

Dx,j
)).

(3.179)

Thus, ΣΘ,1
Dx

is the set of all minimal congruences among the set Con(Θ,x)
2 , and ΣΘ,2

Dx
is the

set of all minimal congruences among the congruences of Con(Θ,x)
2 that are not adjacent

with any other congruence from ΣΘ,1
Dx

. That is, both sets contain mutually non-inclusive
congruences among Con

(Θ,x)
2 (note that a minimal congruence among Con

(Θ,x)
2 is not

necessarily a minimal congruence on Dx). The lists can be empty for some i. We call ξΘ,x

a characteristic of x. Next, we define a partial order on such characteristics. We further
consider only sets of irreducible congruences. For two sets Σ and Σ′, define relations ≤
and < as follows:

Σ ≤ Σ′ ⇐⇒ ∀i < 2l2 , (Σi ̸= ∅ → ∃j < 2l2 , Σ′
j ⊆ Σi),

Σ < Σ′ ⇐⇒ Σ ≤ Σ′ ∧ ¬Σ′ ≤ Σ.
(3.180)

Relations Σ\Σ′ and Σ = Σ′ are defined in the usual way. Also, for any set of irreducible
congruences Σ′

Dx
define a function ↑ optset that returns the set of all congruences σ on

Dx such that δ ⊆ σ for some δ ∈ optset(Σ′
Dx

):

↑ optset(Σ′
Dx

)(i, a, b) ⇐⇒ ΣDx(i, a, b)∧
∧(∃j < 2l2 , optset(Σ′

Dx,j) ̸= ∅ ∧ optset(Σ
′
Dx,j) ⊆ ΣDx,i).

(3.181)

Finally, if (Σ1,Σ2) and (Σ′
1,Σ′

2) are two characteristics, then define a relation ≲ as

(Σ1,Σ2) ≲ (Σ′
1,Σ′

2) ⇐⇒ (Σ1 < Σ′
1) ∨ (Σ1 = Σ′

1 ∧ Σ2 ≤ Σ′
2)∨

∨(Σ1 = Σ′
1 ∧ ¬Σ2 ≤ Σ′

2 ∧ ¬Σ′
2 ≤ Σ2 ∧ Σ2\(↑ optset(Σ1)) < Σ′

2\(↑ optset(Σ1))).
(3.182)

That is, we say that (Σ1,Σ2) ≲ (Σ′
1,Σ′

2) if

1. either every congruence in Σ1 contains some congruence of Σ′
1 and these sets are not

equal;

2. or Σ1 is equal to Σ′
1 and every congruence in Σ2 contains some congruence of Σ′

2;

3. or Σ1 is equal to Σ′
1, sets Σ2 and Σ′

2 are incomparable (there exists a congruence in
Σ2 that does not contain any congruence of Σ2 and vise versa) and every congruence
in Σ2\(↑ optset(Σ1)) contains some congruence of Σ2\(↑ optset(Σ1)) and these sets
are not equal.
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When we decrease a characteristic of a variable, we can decrease the number of congruences
in either of sets Σ1,Σ2, Σ2\(↑ optset(Σ1)) or enlarge congruences. Since for an algebra A
and all its subuniverses we have at most 2l2 congruences, we can decrease a characteristic
of a variable at most 2 · 2l2 times, which is a constant.

We then define three transformations of an instance, giving an expanded covering of
the original instance. These transformations do not increase the characteristics of related
variables. The first transformation T1 makes an instance crucial in some reduction D(1):
it replaces constraints by all weaker constraints until the instance is crucial in D(1). The
second transformation T2 splits a variable x based on two congruences on Dx. Finally, the
third transformation T3 makes some changes for a connected component of an instance.
Transformations T1, T2, T3 are not unique, but we do not need them to be unique and
therefore can formalize them as relations. Thus, for two instances Θ and Θ′ we say that
Θ′ is a T1 transformation of Θ if

T1(Θ′,Θ) ⇐⇒ VX = VX ′ ∧ ∀i, j < n, EX ′(i, j)→ EX (i, j) ∧ ∀i, j < n,

Weaker(Eij
Ä′ , E

ij

Ä) ∧ CrucInst(Θ′, D(1)).
(3.183)

For the second transformation T2, we choose a variable x, choose two congruences σ1, σ2
on Dx, and define two subsets of constraints in Θ containing x, Λ1 = {C1

1 , C
2
1 , ..., C

k
1 } and

Λ2 = {C1
2 , C

2
2 , ..., C

s
2} such that Con(Ci

1,x)
2 = σ1 and Con

(Ci
2,x)

2 = σ2. Denote by Λ0 all
constraints in Θ\Λ1∪Λ2 containing x. Then the instance Θ is transformed as follows. We
choose two new variables x1, x2 and

1. rename x by x1 in all constraints from Λ0 and Λ1;

2. rename x by x2 in all constraints from Λ2;

3. add the constraints σ∗
1(x1, x2) and σ∗

2(x1, x2);

4. for every σ ∈ Con(Λ0,x)
2 add the constraint σ(x1, x2).

Both x1, x2 are children for x. To formalize this transformation, we will use labels for
variables. We choose new labels x1 = max(VX ) + 1, x2 = max(VX ) + 2. To simplify the
following formula, we abbreviate by EX (x, y) both EX (x, y) and EX (y, x).

T2(Θ′,Θ, σ1, σ2, x) ⇐⇒ irCongm(σ1, Dx) ∧ irCongm(σ2, Dx)∧
∧ExpCov(Θ′,Θ) ∧ ∀t, s < bn, t ̸= x ∧ s ̸= x→
→ (EX ′(t, s)↔ EX (t, s) ∧ EtsÄ′(a, b)↔ EtsÄ (a, b))∧

∧(∀y < bn, EX (x, y) ∧ Con(EX (x,y),x)
2 = σ2 → EX ′(x2, y)) ∧ (∀y < bn, EX (x, y)∧

∧(Con(EX (x,y),x)
2 = σ1 ∨ (Con(EX (x,y),x)

2 ̸= σ1 ∧ Con(EX (x,y),x)
2 ̸= σ2))→

→ EX ′(x1, y))∧
∧EX ′(x1, x2) ∧ ∀a, b < l, Ex1x2

A′ (a, b)↔ σ∗
1(a, b) ∧ σ∗

2(a, b)∧

∧(∀y < bn, EX (x, y) ∧ (Con(EX (x,y),x)
2 ̸= σ1 ∧ Con(EX (x,y),x)

2 ̸= σ2)→

→ Con
(EX (x,y),x)
2 (a, b)).

(3.184)

The second and third lines of the formula (3.184) reflect the fact that we do not change
any constraint not containing x. The last three lines add to the instance new constraints
from items 3, 4 (recall that we allowed to have only one constraint relation for any two
variables x1, x2 and instead of the set of constraints consider its intersection).
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Finally, the third transformation T3 uses as an argument a connected component Λ ⊆
Θ. By MinVar(Λ,Θ) = {x1, ..., xs}, where s ≥ 1, we denote the set of all variables xi such
that there exists σ ∈ Con(Λ,xi)

2 that is minimal among Con(Θ,xi)
2 . Then the new instance

Θ′ is defined in the following way. We choose new variables x′
1, ..., x

′
s and

1. rename the variables x1, ..., xs by x′
1, ..., x

′
s in Θ\Λ;

2. add the covers of all constraints from Λ with x′
1, ..., x

′
s instead of x1, ..., xs;

3. for every j and every σ ∈ Con(Θ\Λ,xj)
2 add the constraint σ∗(xj , x′

j);

4. for every j and σ ∈ Con(Θ\Λ,xj)
2 such that Linked(a, b, xj , xj ,Λ) ⊈ σ, add the con-

straint δj(xj , x′
j), where {δj} = optset(Con(Λ,xj)).

We call each xi a parent for x′
i. We can formalize transformation T3 as a relation

T3(Θ′,Θ,Λ) in V 1 in the same way as the previous two ones, and we do not perform
it here. The complexity of all these formulas does not exceed Σ1,b

2 . All transformations
T1, T2, T3 produce expanded coverings. The important thing is that the transformation
T1 does not change the number of variables, transformation T2 increases the number of
variables by 1, and transformation T3 increases the number of variables by s ≤ n.

In the proof of Theorem 34, we consider a sequence of instances Θ1,Θ2, ...,Θk,Θk+1...
such that every Θi+1 is produced from Θi either by composition of transformations T1T2,
or by composition T1T3. Due to some auxiliary lemmas in [15], compositions T1T2 and T1T3
do not increase a characteristic of any variable. Composition T1T2, splitting a variable x to
x1 and x2, decreases the number of minimal congruences among Con(Θ,x)

2 by one for both
x1, x2. Since the number of all congruences on A (and any of its subuniverse D) is bounded
by 2l2 , the number of total new variables that we can produce from x by applying T1T2 to
it and all its children is bounded by 22l2 . Composition T1T3 also decreases a characteristic
of x by enlarging all congruences for x′, thus the number of descendants in one chain is
also bounded by 2l2 .

Let us call a variable x in instance Θ stable if all congruences in Con(Θ,x)
2 are adjacent.

Also, two variables x1, x2 are friends if there is EX (x1, x2) or EX (x2, x1). By applying
T1T3, we also decrease characteristics of all non-stable y’s in MinVar(Λi,Θi), and we can
reuse every non-stable variable at most 2l2 times. Thus, after at most 2l2 steps, every
variable in instance Θi for some i is stable. A stable variable y cannot be a friend with
both a variable z′ and its parent z. Considering the set of friends of y in Θj for j > i, we
thus see that going from Θj to Θj+1 we can replace an old friend of y with at most 2 new
weaker friends and cannot add a new friend keeping its parent. Therefore, after Θi with
ni variables, at any step j > i any variable y will have at most (ni − 1)22l2 friends. Since
any instance in the sequence Θ1,Θ2, ...,Θk,Θk+1... is not fragmented, from some auxiliary
axioms in [15] it follows that there is an instance Θs for some s that satisfies all conditions
posed on instance Θ′ in Theorem 34.

Considering all the above, we can conclude that the number of instances in a sequence
Θ1,Θ2, ...,Θs cannot exceed the exponential bound, and the size of any instance Θi has
some bound bΘ polynomial in n which we will not calculate precisely. The important thing
is that we can formalize the sequence by a third-order class Y, where each instance Θi for
1 ≤ i ≤ s is encoded by a string X of length at most v, Y(X,Θ). We denote such instance
by Θ[X].

In the formula (3.185), redinst(Θ′, linkcomp(Θ′, Di, a)) is a composed function, where
linkcomp is expressed by Σ1,b

1 -formula and returns the reduction of the domain set. The
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complexity of the relations min1of4Red(D(1), D) and 1C(Θ(1)) is Σ1,b
0 . The complexity

of the relations
¬subDSSInst(redinst(Θ′, linkcomp(Θ′, Di, a)))

and ¬Connected(Θ) is Π1,b
1 . CrucInst(Θ, D(1)) and CrucInst(Θ′, D(1)) are expressed by

formulas from B(Σ1,b
1 ). The complexity of ExpCov(Θ′,Θ) is Σ1,b

1 . Finally, the complexity
of relations CCInst(Θ) and IRDInst(Θ) is Π1,b

2 . This gives us ΣB
1 -formula.

T9.6(Θ, D(1)) :=
[︁
CCInst(Θ) ∧ IRDInst(Θ) ∧min1of4Red(D(1), D)∧

∧1C(Θ(1)) ∧ CrucInst(Θ, D(1)) ∧ ¬Connected(Θ)
]︁

=⇒ ∃Y,Θ[∅] = Θ∧
∀X < v,

[︁
Θ[S(X)] = Θ[X] ∨ (∃x < v, ∃σ1 < ⟨l, l⟩, ∃σ2 < ⟨l, l⟩, ∃Θ < bΘ

(T2(Θ,Θ[X], σ1, σ2, x) ∧ T1(Θ[S(X)],Θ)))∨
∨(∃Λ < bΘ, ∃Θ < bΘ(T3(Θ,Θ[X],Λ) ∧ T1(Θ[S(X)],Θ)))∧

∧ExpCov(Θ[S(X)],Θ[X]) ∧ CrucInst(Θ[S(X)], D
(1))

]︁
∧ ∀X < v, S(X) = v →

→ ∃a ∈ D0,¬subDSSInst(redinst(Θ[X], linkcomp(Θ[X], Di, a))).

(3.185)

Theorem 35 (Theorem 9.7, [15]). Suppose D(1) is a 1-consistent non-linear reduction of
a cycle-consistent irreducible instance Θ. If Θ has a solution, then W 1

1 proves that it has
a solution in D(1).

The complexity of relations nonLNRed(D(1), D), 1C(Θ(1)), HOM¨ (X (1), Ä(1)
, H ′) and

HOM¨ (X , Ä, H)) is Σ1,b
0 , and the complexity of relations CCInst(Θ) and IRDInst(Θ) is

Π1,b
2 . This gives us Σ1,b

2 -formula.

T9.7(Θ, D(1)) :=
(︁
CCInst(Θ) ∧ IRDInst(Θ)∧

∧nonLNRed(D(1), D) ∧ 1C(Θ(1))∧

∧∃H < ⟨n, ⟨n, l⟩⟩, HOM¨ (X , Ä, H)
)︁

=⇒ ∃H ′ < ⟨n, ⟨n, l⟩⟩, HOM¨ (X (1), Ä(1)
, H ′).

(3.186)

Theorem 36 (Theorem 9.8, [15]). Suppose D(0), ..., D(s) is a minimal strategy for a cycle-
consistent irreducible CSP instance Θ, and a constraint ρ(x0, ..., xn−1) of Θ is crucial in
D(s). Then W 1

1 proves that ρ is a critical relation with the parallelogram property.

Since we consider only binary constraints of an instance Θ, relations Critical2(EijÄ),
ParlPr2(EijÄ), and minStrategy(Θ,ΘStr, s) are Σ1,b

0 , relation CrucConst(EijÄ ,Θ, DStr
(s))

is a Boolean combination of Σ1,b
1 and Π1,b

1 formulas, and relations CCInst(Θ), IRDInst(Θ)
are Π1,b

2 . This gives us Σ1,b
2 -formula.

T9.8(Θ,ΘStr) :=
(︁
CCInst(Θ) ∧ IRDInst(Θ) ∧minStrategy(Θ,ΘStr, s)∧

∃i, j < n, EX (i, j) ∧ CrucConst(EijÄ ,Θ, DStr
(s))

)︁
=⇒

=⇒ Critical2(EijÄ) ∧ ParlPr2(EijÄ).
(3.187)

Theorem 37 (Theorem 9.9, [15]). Suppose D(0), ..., D(s) is a minimal strategy for a cycle-
consistent irreducible CSP instance Θ, Υ(x0, ..., xn−1) is a subconstraint if Θ, the solution
set to Υ(s) is subdirect, k ∈ {0, 2, ..., n− 2}, V ar(Υ) = {x0, ..., xn−1, u0, ..., ut−1},

Λ = Υy0,...,yk−1,v0,...,vt−1
x0,...,xk−1,u1,...,ut−1 ∧Υyk,...,yn−1,vt,...,v2t−1

xk,...,xn−1,u0,...,ut−1 ∧Υy0,...,yn−1,v2t,...,v3t−1
x0,...,xn−1,u0,...,ut−1 = Υ1 ∧Υ2 ∧Υ3

and Θ(s) has no solutions. Then W 1
1 proves that (Θ\Υ) ∪ Λ has no solutions in D(s).
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To get Υ1,Υ2 and Υ3 we use function substitutek, substituten−k and substituten that
has Σ1,b

0 definition. After the substitution,

V ar(Υ1) = {y0, ..., yk−1, xk, ..., xn−1, v0, ..., vt−1},
V ar(Υ2) = {x0, ..., xk−1, yk, ..., yn−1, vt, ..., v2t−1},

and
V ar(Υ3) = {y0, ..., yk−1, yk, ..., yn−1, v2t, ..., v3t−1}.

The instance Λ here is just an intersection of all constraints of three new instances, i.e. the
union Υ1 ∪Υ2 ∪Υ3. Relations subConstn(Θ,Υ, x0, ..., xn−1) and minStrategy(Θ,ΘStr, s)
are expressed by Σ1,b

0 -formulas, relation subDSSInst(Υ(s)) is Σ1,b
1 -formula. Relations

¬HOM¨ (XΘ(s) , ÄΘ(s)) and ¬HOM¨ (X(Θ\Υ)∪Λ(s) , Ä(Θ\Υ)∪Λ(s)) are Π1,b
1 . Finally, relations

CCInst(Θ) and IRDInst(Θ) are Π1,b
2 . This gives us Σ1,b

2 -formula:

T9.9(Θ,ΘStr,Υ, X) :=
(︁
CCInst(Θ) ∧ IRDInst(Θ) ∧minStrategy(Θ,ΘStr, s)∧

∧∀i < n, VXΥ(i, xi) ∧ ∀i < t, VXΥ(n+ i, ui) ∧ subConst(Θ,Υ, X)∧
∧subDSSInst(Υ(s)) ∧ ¬HOM¨ (XΘ(s) , ÄΘ(s))

)︁
=⇒

=⇒ ¬HOM¨ (X(Θ\Υ)∪Λ(s) , Ä(Θ\Υ)∪Λ(s)).

(3.188)

The proof of the above 5 theorems goes by induction simultaneously on the size of
domain sets. For this, the partial order on domain sets is introduced. For every domain
set D we assign a tuple of integers Size(D) = (|Di1 |, |Di2 |, ..., |Dit |), where Di1 , ..., Dit is
the set of all different domains of D ordered by their size starting from the largest one.
That is, if for two variables xi, xj we have Di = Dj , these domains will be represented
by one integer in Size(D), but for different domains Di ̸= Dj such that |Di| = |Dj | there
will be two equal integers. Then the lexicographic order on tuples of integers induces
a partial order on domain sets, i.e. we say that (a1, ..., ak) < (b1, ..., bl) if there exists
j ∈ {1, 2, ...,min(k + 1, l)} such that ai = bi for all i < j, and aj < bj or j = k + 1. That
is, (a1, ..., ak) < (b1, ..., bl) in two cases:

• these tuples are of any lengths and there is the first j < min(k + 1, l) such that
aj < bj ;

• k < l and for all i ≤ k, ai = bi.

It follows from the definition that ≤ is transitive and there does not exist an infinite
descending chain of reductions. Also, duplicating domains does not affect this partial
order, so the size of a domain set of any covering of the instance is not larger than the size
of a domain set of the instance. If we consider any minimal (proper) one-of-four reduction
D(1) of the instance with a domain set D(0), then Size(D(1)) < Size(D(0)) since we reduce
equal domains simultaneously. Further, we will use the induction on the size of domain
sets exclusively either for reductions of an instance or for instance and its (expanded)
coverings. We never compare domain sets of totally unrelated instances.

The string induction can be formalized as follows. For every CSP instance Θ with
domain set D = VÄ we define two new sets Ddif,D, Dsize,D (here we suppose that none of
the domains D0, ..., Dn−1 is empty). First, we need to remove duplicated domains:

∀a < l, Ddif,D(0, a) ⇐⇒ D0(a)∧
∧∀0 < i < n, ∀a < l, Ddif,D(i, a) ⇐⇒ (Di(a) ∧ (∀j < i∃a < l,

(Di(a) ∧ ¬Ddif,D(j, a)) ∨ (¬Di(a) ∧Ddif,D(j, a))).
(3.189)
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That is, if for any i < n such that there is j < i, Di = Dj , we define Ddif,D,i to be an
empty set. Ddif,D exists due to Σ1,b

1 -induction up to n. Based on this set we define Dsize,D

using the census function:

∀i < n,∀s < l, Dsize,D(i, s) ⇐⇒ #Ddif,D,i = s. (3.190)

Then we can sort a given sequence of natural numbers Dsize,D using a number function
rank(i, n−1, Dsize,D), where s = rank(i, n−1, Dsize,D) is the number that appears at the
ith position when Dsize,D is sorted in non-increasing order (see [4]):

∀i < n,∀s < l, D≥size,D(i, s) ⇐⇒ s = rank(i, n− 1, Dsize,D). (3.191)

The formalization of the order on domain sets is straightforward (at the end of the string
D≥size,D there could be 0s, but this does not affect the order). We will denote this order
between strings by ≤size. It is easy to see that if we view a string X as a number ∑︁

iX(i)2i,
then for any two domain sets D,D′ such that either Θ′ is a minimal reduction of CSP
instance Θ or Θ′ ∈ ExpCov(Θ),

D≥size,D′ ≤size D≥size,D =⇒
∑︂
i

D≥size,D′(i)2i ≤
∑︂
i

D≥size,D(i)2i.

The problem can arise only if we compare domain sets of two totally unrelated instances
(for example, D≥size,D(x) ⇐⇒ x = ⟨0, l⟩ (all domains areA, |A| = l) andD≥size,D′(i, l−1)
for all i < n), but we never do. Thus, here we can use order on strings (viewed as the
binary representation of numbers), successor function, and string minimization axiom (see
[4]).

It turns out that one can reduce string induction in this case to number induction. We
again consider sets Ddif,D and Dsize,D. Since we work in a fixed algebra A = (A,Ω) of
size l, there are k0 ≤ t domains of size 0, k1 ≤ t domains of size 1, k2 ≤ t domains of size
2,...,kl ≤ t domains of size l, with k0 + ...+ kl = t ≤ n, where t is the number of different
domains of the instance,

t = #Ddif,D.

Then let us define l sets, K1,K2, ...,Kl in the following way:

Ks(0, 0) ∧ ∀0 < i < n, ∀r < t, (Ks(i− 1, r) ∧D≥size,D(i, s)→ Ks(i, r + 1))∧
∧(Ks(i− 1, r) ∧ ¬D≥size,D(i, s)→ Ks(i, r)).

(3.192)

Such sets exist due to Σ1,b
1 -induction. Define k0 := 0 and ks = seq(n − 1,Ks) for every

0 < s ≤ l. Then the tuple

size(D) = ⟨kl, kl−1, ..., k0⟩ = ⟨...⟨⟨kl, kl−1⟩, kl−2⟩, ..., k0⟩ < (n(l + 1) + 1)2l+1 (3.193)

codes the size of the domain set D by one integer.
It is easy to see that for any Θ′ ∈ ExpCov(Θ), ⟨k′

l, k
′
l−1, ..., k

′
0⟩ ≤ ⟨kl, kl−1, ..., k0⟩.

Consider a minimal reduction D′ of D, suppose we reduced one domain Dij from the list
Di1 , ..., Dit of the size q to the size p. Thus, the tuple coding the size of D′ is

⟨kl, ..., kq − 1, ..., kp + 1, ..., k0⟩.

Recall the ordering property of the pairing function

⟨x1, x2⟩ < ⟨y1, y2⟩ ⇐⇒ x1 + x2 < y1 + y2 ∨ x1 + x2 = y1 + y2 ∧ x2 < y2. (3.194)
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Since we never consider the trivial case with domains of size 1, there must be at least three
integers, ⟨k2, k1, k0⟩, and we never decrease k1. Thus, for every reduction D′ we have the
following situation:

⟨...⟨⟨...⟨a, kq − 1⟩, ...⟩, kp + 1, ..., ⟩k0⟩

for some a ≥ 0, kq > 1. Since

⟨a, kq⟩ − ⟨a, kq − 1⟩ = a+ 1 + kq,

for any b > ⟨0, 1⟩ and any b > c ≥ 0 we have ⟨c, kp + 1⟩ < ⟨b, kp⟩. It follows that for any
two domain sets D,D′ such that either Θ′ is a minimal reduction of CSP instance Θ or
Θ′ ∈ ExpCov(Θ)

⟨k′
l, k

′
l−1, ..., k

′
0⟩ < ⟨kl, kl−1, ..., k0⟩.

Thus, we can use the standard Number induction axiom available in W 1
1 .

Lemma 64. For any CSP instance Θ, induction on size(D) follows in W 1
1 .

The proof of all theorems goes simultaneously by the induction on the size of the
domain sets. We assume that formulas T9.5, T9.6, T9.7 hold on instances Θ with a
domain set D(0) if Size(D(0)) < Size(D(⊥)), and formulas T9.8 and T9.9 hold on instances
Ψ with a domain set D(s) if Size(D(s)) < Size(D(⊥)). The induction step proves formulas
T9.5, T9.6, T9.7 on instances Θ with a domain set D(0) if Size(D(0)) = Size(D(⊥)), and
formulas T9.8 and T9.9 on instances Ψ with a domain set D(s) if Size(D(s)) = Size(D(⊥)).
Consider the following ΣB

1 -formula ϕ:

ϕ(t) := T.9.5(Θ, D(1)
Θ ,Λ, X) ∧ T9.6(Θ, D(1)

Θ ) ∧ T9.7(Θ, D(1)
Θ )∧

∧T9.8(Ψ,ΨStr) ∧ T9.9(Ψ,ΨStr,Υ, X)∧

∧size(D(1)
Θ ) = t ∧ size(D(s)

Ψ ) = t.

(3.195)

With the application of the Strong Induction Scheme,

∀x
(︁
(∀t < xϕ(t))→ ϕ(x)

)︁
→ ∀zϕ(z), (3.196)

we can formulate the following result.

Theorem 38. Theory W 1
1 proves Theorems 33, 34, 35, 36 and 37.

It follows immediately from Theorem 35 that W 1
1 proves three universal algebra axiom

schemes.

Theorem 39. For any fixed relational structure A which corresponds to an algebra with
WNU operation and therefore leads to a p-time-solvable CSP, the theory W 1

1 proves uni-
versal algebra axiom schemes BAA-axioms, CRA-axioms, and PCA-axioms.

This, together with Theorem 27, proves Theorem 1:

Theorem 1 (The main theorem). For any particular relational structure A such that
CSP(A) is in P :

1. Theory W 1
1 proves the soundness of Zhuk’s algorithm. That is, the theory proves the

formula RejectA(X ,W ) =⇒ ¬HOM(X ,A).
2. There exists a p-time algorithm F such that for any unsatisfiable instance X , i.e. such
that ¬HOM(X ,A), the output F (X ) of F on X is a propositional proof of the proposition
translation of formula ¬HOM(X ,A) in propositional calculus G.
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3.4 Closing notes
In this chapter, we have proved three universal algebra axiom schemes BAA-axioms, CRA-
axioms, and PCA-axioms in the theory of bounded arithmetic W 1

1 . In Section 3.2 we first
formalized in the third-sorted setting all the universal algebra notions used in the proof
and then, in Section 3.3, showed the formalization of the proofs of theorems and lemmas
themselves, concentrating on the key statements and arguments in [15].

We did not treat those statements whose formalization is straightforward by liter-
ally translating the original notions into bounded arithmetic language: the formalization
of proofs would just exactly repeat the universal algebra reasoning of Zhuk’s paper (al-
though we have considered a few examples of those too). Also, we did not consider proofs
that require nothing that thorough and tedious formalization of all tiny details in V 1,
though they require a lot of imagination from a universal algebra point of view. Our goal
was not to mechanically rewrite all the proofs in the language of the theory of bounded
arithmetic. Instead, we wanted to clearly show the idea of formalization and treat notions
and statements whose formalization needs some additional idea.

As far as we were able, we tried to keep the formalization, even for exponentially large
objects, in the second-sorted level, working with definitions of the objects rather than with
the objects themselves. For this, we used some tricks and simplifications that were allowed
by the fact that although some universal algebraic statements hold in general, we needed
to treat only the special instances applied in [15], i.e. related to the objects formed from
bottom to top from the domains for variables and constraint relations. If we could stay in
the second-order setup all the way, our formalization would stay in theory V 1. However,
eventually, we still were forced to use third-order objects since even elementary (and seems
to be unavoidable) from a universal algebra point of view reasoning about factor algebras
when algebra is not a constant product requires exponential size.

In retrospect, our initial aim to provide short propositional proofs of the soundness
of the algorithm for the general p-time CSPs in the Extended Frege proof system, cor-
responding to propositional reasoning, seems to be beyond the formalization of Zhuk’s
proof. It is likely that to achieve it, one would need to make changes in the level of the
proof itself before the formalization. Finding a formalization in a weaker theory than W 1

1 ,
possibly in V 1 itself, is in our view the most interesting avenue for further research.
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Conclusion
We have shown that Zhuk’s algorithm, solving any tractable CSP(A) in polynomial time,
may be augmented so that it also provides independent witnesses – propositional proofs –
for negative answers. Witnesses of the non-existence of a solution, i.e. the non-existence
of a homomorphism for relational structures, are proofs in the propositional proof system
G. To get an even more transparent proof system, e.g. the Extended Frege system (which
is equivalent to the usual textbook Hilbert calculus with the substitution rule), one would
need to formalize the soundness of the algorithm in a weaker theory, e.g. in V 1.

The most interesting open question is whether the formalization of the algorithm in
a weaker theory of bounded arithmetic is possible, and whether it can be done without
changes in the level of Zhuk’s proof of the CSP dichotomy theorem itself. Another question
is whether the restriction of the types of algebras considered within the algorithm would
lead to some weakening of the theory. Bulatov [1] uses different methods of universal
algebra to prove the dichotomy. The problem of formalizing Bulatov’s algorithm in theory
of bounded arithmetic is another open problem of particular interest.

The bounded formulas involved in the formalization are sometimes quite long. It may
be that a formalization that does not use formal arithmetic, but rather one of the modern
(computer-oriented) systems for formalization, namely proof assistants, such as Lean or
Isabelle, would be more suitable for this. However, the link between these systems and
propositional logic is currently missing. We think this could be another interesting avenue
for future research.
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