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Abstract

The CSP (constraint satisfaction problems) is a class of problems deciding whether
there exists a homomorphism from an instance relational structure to a target one.
The CSP dichotomy is a profound result recently proved by Zhuk [19] and Bulatov [7].
It establishes that for any fixed target structure, CSP is either NP-complete or p-time
solvable. Zhuk’s algorithm solves CSP in polynomial time for constraint languages
having a weak near-unanimity polymorphism.

For negative instances of p-time CSPs, it is reasonable to explore their proof com-
plexity. We show that the soundness of Zhuk’s algorithm can be proved in a theory
of bounded arithmetic, namely in the theory V 1 augmented by three special universal
algebra axioms. This implies that any propositional proof system that simulates both
Extended Resolution and a theory that proves the three axioms admits p-size proofs
of all negative instances of a fixed p-time CSP.

1 Introduction
An important class of NP problems are the constraint satisfaction problems (CSP). We
will give its definition in Subsection 2.2, but a universal formulation is as follows: in
a constraint satisfaction problem CSP(A) associated with a relational structure A, for
any relational structure over the same vocabulary X the question is whether X can be
homomorphically mapped into A. The problem X ↦→? A is an instance of CSP(A). A
celebrated theorem of Zhuk [19] and Bulatov [7] states that for each constraint language
A, CSP(A) is either NP-complete or p-time decidable (see [3],[11] for the history of this
theorem and earlier results and conjectures).

The statement that there is no homomorphism from X into A can be encoded by a
propositional tautology having atoms for the potential edges of a homomorphism. The
size of this tautology, to be denoted ¬HOM(X ,A), is polynomial in the sizes of X and
A. When CSP(A) is NP-complete we cannot hope to have short propositional proofs (in
any proof system) of formulas ¬HOM(X ,A) for all unsatisfiable instances X of CSP(A),
as that would imply that NP is closed under complementation. However, when CSP(A)
is p-time decidable this obstacle is removed.

Zhuk’s algorithm solves polynomial time CSPs and provides a tool for the investigation
of their proof complexity. In fact, for a satisfiable instance X of CSP(A) the algorithm
produces a homomorphism from X to A as a witness of an affirmative answer. For un-
satisfiable instances, on the contrary, one has no witness to the algorithm’s correctness
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other than its run. Our main result is that the soundness of Zhuk’s algorithm can be
proved in a theory of bounded arithmetic, namely in the theory V 1 augmented with three
universal algebra axioms. By the soundness here we mean that all negative answers of the
algorithm are correct. Every theory of bounded arithmetic corresponds to some propo-
sitional proof system in the sense that if one proves a universal statement in the theory,
the propositional translations of this statement will have polynomial proofs in the proof
system. Short propositional proofs of the statement ¬HOM(X ,A) can be considered as
witnesses for negative instances of CSP(A).

To establish the result we uses a modified framework analogous to the framework we
explore for our previous result in [14]; there we considered a simple example of relational
structures that are undirected graphs (the Hell-Nešetřil dichotomy theorem). Atserias and
Ochremiak in [1] studied the relation between universal algebra (and CSP in particular)
and proof complexity.

The paper is organized as follows. In Section 2 we recall the necessary background from
universal algebra, CSP theory, proof complexity, and bounded arithmetic. In Section 3 we
define strong subuniverses and linear algebras, and formulate Zhuk’s four cases theorem
representing one of the main ideas of the whole algorithm. The outline of Zhuk’s algorithm
is presented in Section 4. Section 5 is devoted to the soundness of Zhuk’s algorithm and
is divided into three principal parts. In Sections 5.1 - 5.3 we introduce the framework,
formalize most of the notions used in the algorithm, and define a new theory of bounded
arithmetic. In Section 5.4 we prove the soundness of consistency reductions in the theory
V 1. Finally, in Section 5.5 we consider the linear case of the algorithm. The main theorem
is formulated in Section 5.6 and the summary of the proof is presented there.

2 Preliminaries

2.1 Basic notions from universal algebra

This subsection is based on papers [2], [3]. Some definitions and results are adopted from
[8].

For our purpose, we will consider only finite objects. For any non-empty domain A and
any natural number n we call a mapping f : An ↦→ A an n-ary operation on A. An algebra
A = (A, f1, f2, ...) is a pair of a domain A and basic operations f1, f2, ... of fixed arities
on A from some signature Σ = {f1, f2, ...}. A constraint language Γ is a set of relations
on finite domains. A relational structure A = (A,R1, R2, ...) is a pair of a domain A and
relations R1, R2, ... on A from some constraint language Γ = {R1, R2, ...}.

We say that an m-ary operation f : Am → A preservers an n-ary relation R ∈ An

(or f is the polymorphism of R, or f is compatible with R, or R is invariant under f) if
f(a1̄, ..., am̄) ∈ R for all choices of a1̄, ..., am̄ ∈ R. For any constraint language Γ and any
set of operations O we will denote by Pol(Γ) the set of all operations on A preserving
each relation from Γ, and by Inv(O) the set of all relations on A invariant under each
operation from O.

A term in a signature Σ is a formal expression that uses variables and composition of
symbols from Σ. The set of all term operations of algebra A = (A,F ) is called the clone of
term operations of A, denoted by Clone(A). A well-known theorem from universal algebra
establishes the connection between algebras and relational structures.

Theorem 1 ([4]). For any algebra A there exists relation structure A such that Clone(A)
= Pol(A).
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In general, any set of operations O on A is a clone if it contains all projections and
is closed under superposition, i.e. for a k-ary operation f ∈ O and m-ary operations
g1, ..., gm ∈ O the superposition f [g1, ..., gk] is in O as well. We define Clone(O) to be the
smallest clone containing O. The dual object for relations is the so-called relational clone
– a set of relations Γ containing the binary equality relation and closed under primitive
positive definitions (relations defined by relations from Γ, conjunction, and existential
quantifiers). If we define RelClone(Γ) to be the smallest relational clone containing Γ,
then the following theorem expresses a one-to-one correspondence between relational clones
and clones.

Theorem 2 (Galois correspondence for constraint languages).
1. For any finite domain A, any constraint language Γ on A, Inv(Pol(Γ)) = RelClone(Γ).
2. For any finite domain A, any set of operations O on A, Pol(Inv(O)) = Clone(O).

For an algebra A a subset B ⊆ A is a subuniverse if it is closed under all oper-
ations of A. Given a subuniverse B we can form the subalgebra B ≤ A by restric-
tion of all the operations of A to the set B. Given an algebra A for every subset
X ⊆ A we denote by Sg(X) the minimal subalgebra of A containing X, i.e. the sub-
algebra generated by X. If we define a closure operator E(X) to be E(X) = X ∪
{f(a1, ..., an) : f is a basic operation on A, a1, ..., an ∈ X}, and Et(X) for t ≥ 0 by
E0(X) = X,Et+1(X) = E(Et(X)), then

Sg(X) = X ∪ E(X) ∪ E2(X) ∪ ...

An equivalence relation σ on A is a congruence if any term operation on A is compatible
with σ. Two trivial congruences on A are the diagonal relation ∆A = {(a, a) : a ∈ A}
and full relation ∇A = A2. A congruence is a maximal congruence if it is not contained
in any other congruence except ∇A. A congruence σ allows one to introduce a quotient,
or factor, algebra A/σ. It has as the universe the set of σ-classes and the operations
are defined using arbitrary representatives from these classes. Note that the congruence σ
forms a subalgebra of A2: applying any term operation to elements from σ coordinatewise,
due to the compatibility property, we again get an element from σ. In general, any n-ary
relation R on A invariant under all term operations is a subalgebra of An.

A nonempty class K of algebras of the same type (same signature) is called a variety
if it is closed under subalgebras S(K), homomorphic images H(K), and direct products
P (K). It is known that the smallest variety containing K is equal to HSP (K). For a
pair of terms s, t over a signature Σ, we say that a class of algebras K in the signature Σ
satisfies the identity s ≈ t if every algebra in the class does. For any set of identities Ξ of
the type Σ, define M(Ξ) to be the class of algebras K satisfying Ξ. A class K of algebras
is an equational class if there is a set of identities Ξ such that K = M(Ξ). In this case,
we say that K is defined, or axiomatized, by Ξ.

Theorem 3 (Birkhoff). K is an equational class if and only if K is a variety. In other
words, classes of algebras defined by identities are precisely those that are closed under
H,S, and P .

2.2 CSP basics

In this section, we will give two different definitions of the Constraint satisfaction problem
(CSP) and will formulate the CSP dichotomy conjecture. Some definitions, examples, and
results are adapted from [3], [19], and [21].
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Definition 1 (CSP over finite domains [19]). The Constraint satisfaction problem is a
problem of deciding whether there is an assignment to a set of variables that satisfies
some specified constraints. An instance of CSP problem over finite domains is defined as
a triple Θ = (X,D,C), where

• X = {x0, ..., xn−1} is a finite set of variables,

• D = {D0, ..., Dn−1} is a set of non-empty finite domains,

• C = {C0, ..., Ct−1} is a set of constraints,
where each variable xi can take on values in the non-empty domain Di, and every con-
straint Cj ∈ C is a pair (x⃗j , ρj) with x⃗j being a tuple of variables of some length mj , called
a constraint scope, and ρj being an mj-ary relation on the product of the corresponding
domains, called a constraint relation. The question is whether there exists a solution to
Θ, i.e. an assignment to every variable xi such that for each constraint Cj the image of
the constraint scope is a member of the constraint relation.

A constraint satisfaction problem associated with constraint language Γ, to be denoted
CSP(Γ), is a subclass of CSP defined by the property that any constraint relation in any
instance of CSP(Γ) must belong to Γ.

The equivalent definition of CSP can be formulated in terms of homomorphisms be-
tween relational structures.
Definition 2 (CSP [6]).

• A vocabulary is a finite set of relational symbols R1,..., Rn, each of which has a fixed
arity.

• A relational structure over the vocabulary R1,..., Rn is a tuple A = (A,RA
1 , ..., R

A
n )

such that A is a non-empty set, called the universe of A, and each RA
i is a relation

on A having the same arity as the symbol Ri.

• For X , A, being relational structures over the same vocabulary R1,..., Rn, a homo-
morphism from X to A is a mapping ϕ : X → A from the universe X to the universe
A such that for every m-ary relation RX and every tuple (x1, ..., xm) ∈ RX we have
(ϕ(x1), ..., ϕ(xm)) ∈ RA.

Let A be a relational structure over a vocabulary R1,..., Rn. In the constraint satisfaction
problem associated with A, denoted by CSP(A), the question is, given a structure X over
the same vocabulary, whether there exists a homomorphism from X to A. If the answer
is positive, then we call the instance X satisfiable and unsatisfiable otherwise. We call A
the target structure and X the instance (or input) one.

The idea of translation from the homomorphism form to the constraint form is the
following: consider the domain X of the structure X as a set of variables and every tuple
(x1, ..., xm) ∈ RX as a constraint C = (x1, ..., xm;RA). For the translation back, consider
the set of variables X as a domain of the instance structure, the set A as a domain of the
target structure, and each constraint C = (x1, ..., xm;RA) as a relation RX on X.

It was conjectured years ago by Feder and Vardi [11] and recently proved by Zhuk
[19] and Bulatov [7] that there is a dichotomy: each CSP(A) is either NP-complete or
polynomial time solvable. The dichotomy depends on the following. We call an operation
Ω on a set A the weak-near unanimity operation (WNU) if it satisfies Ω(y, x, x, ..., x) =
Ω(x, y, x, ..., x) = ... = Ω(x, x, ..., x, y) for all x, y ∈ A. Furthermore, Ω is called idem-
potent if Ω(x, ..., x) = x for every x ∈ A, and is called special if for all x, y ∈ A,
Ω(x, ..., x,Ω(x, ..., x, y)) = Ω(x, ..., x, y).
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Lemma 1 ([17]). For any idempotent WNU operation Ω on a finite set, there exists a
special WNU operation Ω′ ∈ Clone(Ω).

Theorem 4 (CSP dichotomy theorem [19]). Suppose Γ is a finite set of relations on a set
A. Then CSP(Γ) can be solved in polynomial time if there exists a WNU operation Ω on
A preserving Γ; CSP(Γ) is NP-complete otherwise.

In terms of complexity, instead of Γ it is more convenient to consider richer languages
since they considerably reduce the variety of languages to be studied. For example, if
we consider the language RelClone(Γ) that contains the binary equality relation and is
closed under pp-definitions over Γ, we do not increase the complexity of the problem since
CSP(RelClone(Γ)) is log-space reducible to CSP(Γ). Note that due to Theorem 2 all
relations pp-definable over Γ are invariant under all polymorphisms preserving Γ.

Apart from pp-definability, there are other modifications of constraint languages that
do not increase their complexity (i.e. allow log-space reduction) such as pp-interpretability,
homomorphic equivalence, and singleton expansion of a core constraint language, see [3].
The beauty of the so-called algebraic approach to CSP is that these modifications to
constraint languages represent classical algebraic constructions. Indeed, homomorphic
equivalence and singleton expansion put together ensure that the algebra corresponding
to the constraint language is idempotent. Pp-interpretations correspond to taking ho-
momorphic images, subalgebras, and products over the algebras of polymorphisms of the
constraint languages, where an algebra of polymorphisms is Pol(Γ) with elements being
polymorphisms and the operation being a superposition.

It turns out that a constraint language D pp-interpreters a constraint language E if
and only if in Pol(E) there exist operations satisfying all the identities that are satisfied by
operations in Pol(D) [2]. Since a variety of algebras is defined by its identities, the variety
of algebra corresponding to the language D contains the variety of algebra corresponding to
the language E . Thus, pp-interpretability does not change the structure or the properties
of the corresponding algebras.

Pp-constructibility combines all previous modifications.

Definition 3 (Pp-constructibility [3]). A constraint language D over a domain D pp-
constructs a constraint language E over a domain E if there is a sequence of constraint
languages D = C1, ..., Ck = E such that for each 1 ≤ i ≤ k

• Ci pp-interprets Ci+1, or

• Ci is homomorphically equivalent to Ci+1, or

• Ci is a core and Ci+1 is its singleton expansion.

The last theorem in this section is very useful since it allows one to work with at
most binary constraints, which often simplifies representation and analysis of CSP. For
the sake of clarity, we will further restrict the discussion to constraint languages with at
most binary relations. It must be stressed that all results in the paper can be extrapolated
to any other finite constraint languages (with possibly more tedious representation).

Theorem 5. For any constraint language Γ there is a constraint language Γ′ such that
all relations in Γ′ are at most binary and Γ and Γ′ pp-constructs each other.
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2.3 Characterization of a CSP instance

This subsection introduces some properties of a CSP instance that will be used in Zhuk’s
algorithm [19] and provides their interpretations in terms of constraint languages with at
most binary relations.

We say that a variable yi of a constraint Cj = (y1, ..., yk;R) is dummy if R does not
depend on its i-th variable. A relation R ⊆ D0 × ...×Dn−1 is subdirect if for every i the
projection of R onto the i-th coordinate is the whole Di. A CSP instance Θ with a domain
set D is called 1-consistent (or arc consistent) if for every constraint Ci of the instance
the corresponding relation Ri ⊆ Di1 × ...×Dik

is subdirect. An arbitrary instance can be
turned into 1-consistent instance with the same set of solutions by a simple algorithm [3].

Another type of consistency is related to the notion of a path. Let Dy denote the
domain of the variable y ∈ {x1, ..., xn}. We say that the sequence y1−C1−y2− ...−yl−1−
Cl−1− yl is a path in a CSP instance if {yi, yi+1} are in the scope of Ci for every i < l (we
do not care in what order variables yi, yi+1 occur in Ci). We say that the path connects b
and c if there exists ai ∈ Dyi for every i such that a1 = b, al = c and the projection of Ci

onto {yi, yi+1} contains the tuple (ai, ai+1). We say that a CSP instance is cycle-consistent
if it is 1-consistent and for every variable y and a ∈ Dy any path starting and ending with
y connects a and a. A CSP instance is called linked if for every variable y occurring in
the scope of a constraint C and for all a, b ∈ Dy there exists a path starting and ending
with y in Θ that connects a and b.

A fragmented CSP instance can be divided into several nontrivial instances: an in-
stance is fragmented if the set of variables X can be divided into 2 disjoint sets X1 and
X2 such that each of them is non-empty, and the constraint scope of any constraint of Θ
either has variables only from X1, or only from X2. We call an instance Θ = (X,D,C)
irreducible if any instance Θ′ = (X ′, D′, C ′) such that X ′ ⊆ X, D′

x = Dx for every x ∈ X ′,
and every constraint of Θ′ is a projection of a constraint from Θ on some subset of variables
from X ′ is fragmented, or linked, or its solution set is subdirect.

One of the important notions of Zhuk’s algorithm is a weaker constraint: by weak-
ening some constraints we make an instance weaker (i.e. possibly having more solu-
tions). We say that a constraint C1 = ((y1, ..., yt), ρ1) is weaker or equivalent to a
constraint C2 = ((z1, ..., zs), ρ2) if {y1, ..., yt} ⊆ {z1, ..., zs} and C2 implies C1, i.e the
solution set to Θ1 = ({z1, ..., zs}, (Dz1 , ..., Dzs), C1) contains the solution set to Θ2 =
({z1, ..., zs}, (Dz1 , ..., Dzs), C2). We say that C1 is weaker than C2 (denoted C1 ≤ C2)
if C1 is weaker or equivalent to C2, but C1 does not imply C2. There can be 2 types
of weaker constraints. We say that C1 = ((y1, ..., yt), ρ1) ≤ C2 = ((z1, ..., zs), ρ2) with
{y1, ..., yt} ⊆ {z1, ..., zs} if one of the following conditions holds:

1. The arity of relation ρ1 is less than the arity of relation ρ2 and for any tuple
(az1 , ..., azs) ∈ ρ2, (ay1 , ..., ayt) ∈ ρ1.

2. The arities of relations ρ1 and ρ2 are equal and ρ2 ⊊ ρ1.

All the above-mentioned properties have simple interpretations in terms of constraint
languages with at most binary relations. Generally, CSP is defined as having a single
common “superdomain” D for all variables. However, even though domains can be all
equal at the beginning, Zhuk’s algorithm will create different domains for individual vari-
ables. We require each Di, i ∈ {0, ..., n−1} to be pp-definable over the constraint language
Γ, i.e. CSP(Γ) is p-equivalent to CSP(Γ, D0, ..., Dn−1). Any constraint for the CSP in-
stance is either C = (xi;Di), where Di is a restriction on the domain for the variable xi,
or C = (xi, xj ;Eij). Every unary relation can be viewed as a domain and every binary
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relation - as an edge, where the order corresponds to the direction. So it is natural to
refer to these relational structures as some sort of digraphs and to the CSP problem as a
homomorphism problem between relational structures.

In our case, an input relational structure is a classical digraph X = (VX , EX ) with VX =
{x1, ..., xn}. Let us call a target relational structure a digraph with domains Ä = (VÄ, E

ij

Ä :
0 ≤ i, j < n), where VÄ = {D0, ..., Dn−1}. The problem is in finding a homomorphism
such that it sends every xi to the domain Di and every edge (xi, xj) ∈ EX to an edge
(a, b) ∈ Eij

Ä (relations Eij

Ä can differ for all i, j). We will denote the corresponding instance
by Θ = (X , Ä).

In this setting, a 1-consistent CSP instance is an instance in which for every edge
(xi, xj) from EX , for any element a ∈ Di there is an element b ∈ Dj such that (a, b) ∈ Eij

Ä
and vice versa. A variable xi of an edge (xi, xj) ∈ EX is dummy if for every b ∈ Dj such
that there exists a ∈ Di, Eij

Ä(a, b), there is an edge (a′, b) ∈ Eij

Ä for every a′ ∈ Di. Note
that for a 1-consistent CSP instance this means that Eij

Ä is a full relation.
Since we work with digraphs, by undirected path or cycle in the paper are meant

any path or cycle with edges not necessarily directed in the same direction. A path
y0 − C0 − y1 − ... − yt−1 − Ct−1 − yt is an undirected path in digraph X (where some
variables yi, yj can be the same). Consider this path as a separate digraph Pt with new
(all different) vertices s0 −C0 − s1 − ...− st−1 −Ct−1 − st, and consider a homomorphism
H from Pt to X such that for each i ≤ t, H(si) = yi. We say that path Pt connects
elements b ∈ Dy0 and c ∈ Dyt if it can be homomorphically mapped to Ä in such a way
that for each i ≤ t homomorphism H ′ : Pt → Ä sends si to some ai ∈ Dyi and H ′(s0) = b,
H ′(st) = c. An instance is linked if for any a, b ∈ Dy there exists an undirected path
that connects a and b. Cycle-consistency in these terms means that the instance is 1-
consistent and for any a ∈ Dy and any y ∈ {x0, ..., xn−1} any undirected path that is a
cycle connects a and a. In other words, an instance is cycle-consistent if any undirected
cycle in X can be homomorphically mapped onto a cycle in Ä for any element a ∈ Dy and
any y ∈ {x0, ..., xn−1} that occurs in this cycle.

x0 ∈ D0 x1 ∈ D1

x2 ∈ D2

a

b

a

c

d

b

(x0, x1) ∈ EX

(x2, x1) ∈ EX

(x2, x0) ∈ EX

Figure 1: Cycle-consistent, non-linked instance.

Compare as examples two CSP instances in Figure 1 and Figure 2. The input di-
graph X is the same for both instances, VX = {x0, x1, x2}, EX = {(x0, x1), (x2, x1),
(x2, x0)}. The first CSP instance has three constraint relations, E01

Ä = {(a, a), (b, c)}),
E21

Ä = {(d, a), (b, c)}) and E20
Ä = {(d, a), (b, b)}. This instance is cycle-consistent since it

is 1-consistent (each constraint of the instance is subdirect) and for every variable x and
e ∈ Dx any path starting and ending with x connects e and e. But it is not linked since,
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x0 ∈ D0 x1 ∈ D1

x2 ∈ D2

a

b

a

c

d

b

(x0, x1) ∈ EX

(x2, x1) ∈ EX

(x2, x0) ∈ EX

Figure 2: Linked, not cycle-consistent instance.

for example, there is no path connecting a and b in D0. However, if we add one more
edge (d, c) to E21

Ä , the new instance will be linked. On the contrary, the second instance
in Figure 2 is linked, but not cycle-consistent.

A fragmented instance in terms of digraphs and digraphs with domains is such an
instance where X is a disconnected digraph. Finally, if an instance is not irreducible, then
there exists a subgraph X ′ (a digraph formed from subsets of vertices VX ′ ⊆ VX and edges
EX ′ ⊆ EX ) such that the resulting instance Θ = (X ′, Ä) is not fragmented, is not linked,
and its solution set is not subdirect.

Since there are two types of weaker constraints (of less arity or of richer relation of
the same arity), we can weaken the CSP instance Θ = (X , Ä) either by removing an edge
(xi, xj) ∈ EX from X (i.e. by reducing the arity of a constraint) or by adding edges to
a relation Eij

Ä (i.e. by making a richer relation of the same arity). The algorithm never
increases the domains.

x0 ∈ D0 x1 ∈ D1

x2 ∈ D2

a

b

e

a

c

e

d

b

(x0, x1) ∈ EX

(x2, x1) ∈ EX

(x2, x0) ∈ EX

Figure 3: Division into linked components.

We conclude this subsection with Lemma 2 to be used further for the formalization of
Zhuk’s algorithm. For an instance Θ and its variable x let Linked(Θ, x) denote the binary
relation on Dx defined as follows: (a, b) ∈ Linked(Θ, x) if there exists a path in Θ that
connects a and b.

Lemma 2 ([19]). Suppose Θ is a cycle-consistent CSP instance such that every its variable
x ∈ X actually occurs in some constraint of Θ. Then for every x ∈ X there exists a path
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in Θ connecting all pairs (a, b) ∈ Linked(Θ, x) and Linked(Θ, x) is a congruence.

For example, consider cycle-consistent non-linked instance Θ in Figure 3. Binary
relation Linked(Θ, x) divides each domain into two classes: D0 into {a, e} and {b}, D1
into {a, e} and {c}, and D2 into {d} and {b}.

2.4 The theory V 1

In this subsection most definitions and results are adapted from [9], [15], [16].
Second-order (or two-sorted first-order) theories of bounded arithmetic use the fol-

lowing setup. The variables are of two kinds: variables x, y,H, ... of the first kind are
called number variables and range over the natural numbers, and variables X,Y,H, ...
of the second kind are called set variables and range over finite subsets of natural num-
bers (which can be represented as binary strings). Functions and predicate symbols can
use both number and set variables, and there are number-valued functions and set-valued
functions. Also, there are two types of quantifiers: quantifiers over number variables are
called number quantifiers, and quantifiers over set variables are called string quantifiers.
The language for the second-order theory of bounded arithmetic is an extension of the
standard language for Peano Arithmetic LPA,

L2
PA = {0, 1,+, ·, | |,=1,=2,≤,∈}.

The symbols 0, 1,+, ·,=1 and ≤ are function and predicate symbols over the number
variables. The function |X| (called the length of X) is a number-valued function and it
denotes the length of the corresponding string X (i.e. the upper bound for the set X).
The binary predicate ∈ for a number and a set variables denotes set membership, and =2
is the equality predicate for sets.

Notation 1. We will use the abbreviation X(t) =def t ∈ X, where t is a number term.
We thus think of X(i) as of the i-th bit of binary string X of length |X|.

There is a set of axioms 2-BASIC [9] that defines basic properties of symbols from
L2

PA. Here we present only axioms of the second sort:

Definition 4 (2-BASIC, second-sort axioms). The set 2-BASIC for the second-sort vari-
ables contains the following axioms:

1. X(y)→ y < |X|.

2. y + 1 =1 |X| → X(y).

3. (|X| =1 |Y | ∧ ∀i < |X|(X(i)↔ X(i))) ⇐⇒ X =2 Y .

We will skip the indices =1,=2 as there is no danger of confusion.

Notation 2. Sometimes for a set A, an element x and a formula ϕ instead of ∃x <
|A|A(x) ∧ ϕ and ∀x < |A|A(x)→ ϕ we will write ∃x ∈ Aϕ and ∀x ∈ Aϕ.

Definition 5 (Bounded formulas). Let L be the two-sorted vocabulary. If x is a number
variable, X is a string variable that do not occur in an L-number term t, then ∃x ≤ tϕ
stands for ∃x(x ≤ t ∧ ϕ), ∀x ≤ tϕ stands for ∀x(x ≤ t → ϕ), ∃X ≤ tϕ stands for
∃X(|X| ≤ t ∧ ϕ) and ∀X ≤ tϕ stands for ∀X(|X| ≤ t → ϕ). Quantifiers that occur in
this form are said to be bounded, and a bounded formula is one in which every quantifier
is bounded.
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Definition 6 (Number Induction axioms). If Φ is a set of two-sorted formulas, then
Φ-IND axioms are the formulas

ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x+ 1))→ ∀zϕ(z), (1)

where ϕ is any formula in Φ. The formula ϕ(x) may have other free variables than x of
both sorts.

Definition 7 (Number Minimization and Maximization axioms). The number minimiza-
tion axioms (or the least number principle axioms) for a set Φ of formulas are denoted by
Φ-MIN and consist of the formulas

ϕ(y)→ ∃x ≤ y(ϕ(x) ∧ ¬∃H < xϕ(z)), (2)

where ϕ is a formula in Φ. Similarly, the number maximization axioms for Φ are denoted
by Φ-MAX and consist of the formulas

ϕ(0)→ ∃x ≤ y(ϕ(x) ∧ ¬∃H ≤ y(x < z ∧ ϕ(z))), (3)

where ϕ is a formula in Φ. In the above definitions, ϕ is permitted to have free variables
of both sorts, in addition to x.

Definition 8 (Comprehension axioms). If Φ is a set of two-sorted formulas, then Φ-COMP
is the set of all formulas

∀x∃X ≤ x ∀y < x y ∈ X ≡ ϕ(y), (4)

where ϕ is any formula in Φ, and X does not occur free in ϕ(y). The formula ϕ(y) may
have other free variables than y of both sorts.

Finally, we can define the theory V 1, which is the key theory for our work.

Definition 9 (The theory V 1). Σ1,b
0 = Π1,b

0 -formulas are formulas with all number quan-
tifiers bounded and with no set-sort quantifiers. Classes Σ1,b

1 and Π1,b
1 are the smallest

classes of L2
PA-formulas such that:

1. Σ1,b
0 ∪Π1,b

0 ⊆ Σ1,b
1 ∩Π1,b

1 ,

2. both Σ1,b
1 and Π1,b

1 are closed under ∨ and ∧,

3. the negation of a formula Σ1,b
1 is in Π1,b

1 and vice versa,

4. if ϕ ∈ Σ1,b
1 , then also ∃X ≤ t ϕ ∈ Σ1,b

1 ,

5. if ϕ ∈ Π1,b
1 , then also ∀X ≤ t ϕ ∈ Π1,b

1 .

The theory IΣ1,b
0 is a second-order theory and it is axiomatized by 2-BASIC and the

IND scheme for all Σ1,b
0 -formulas. The teory V 0 expands IΣ1,b

0 by having also bounded
comprehension axioms Σ1,b

0 -CA. The theory V 0 is a conservative extension of IΣ1,b
0 with

respect to Σ1,b
0 -consequences: if γ is a Σ1,b

0 -formula and V 0 proves its universal closure,
so does IΣ1,b

0 . Finally, the theory V 1 extends V 0 by accepting the IND scheme for all
Σ1,b

1 -formulas.
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2.5 Auxiliary functions, relations, and axioms in V 1

In this subsection, we will present some general auxiliary functions and relations, which
help to express the bounds of the theory V 1.

For any two sets A,B, we say that a set B is a subset of A if

subS(B,A) ⇐⇒ |A| = |B| ∧ ∀i < |B| (B(i)→ A(i)). (5)

We say that a set B is a proper subset of A if

PsubS(B,A) ⇐⇒ |A| = |B| ∧ ∀i < |B| (B(i)→ A(i))∧
∃j < |A|, B(j) ∧ ∃i < |A|, A(i) ∧ ¬B(i).

(6)

If x, y ∈ N, we define the pairing function ⟨x, y⟩ to be the following term

⟨x, y⟩ = (x+ y)(x+ y + 1)
2 + y. (7)

One can easily prove in V 0 that for the pairing function the following is true:

• ∀x1, x2, y1, y2 (⟨x1, y1⟩ = ⟨x2, y2⟩ → x1 = x2 ∧ y1 = y2),

• ∀z∃x, y (⟨x, y⟩ = z),

• ∀x, y (x, y ≤ ⟨x, y⟩ < (x+ y + 1)2).

We can iterate the pairing function to code triples, quadruples, and so forth for any k,
inductively setting

⟨x1, x2, ..., xk⟩ = ⟨...⟨⟨x1, x2⟩, x3⟩, ..., xk⟩, (8)

where

• ∀x1, x2, ..., xk x1, x2, ..., xk ≤ ⟨x1, x2, ..., xk⟩ < (x1 + x2 + ...+ xk + 1)2k .

We refer to the term ⟨x1, x2, ..., xk⟩ as the tupling function.

Notation 3. For any set H, m ≥ 2: H(x1, ..., xm) =def H(⟨x1, ..., xm⟩).

We will use the tupling function to code a function as a set. We can then express that
H is a function from sets X1, ..., Xn to a set Y by stating

∀x1 ∈ X1, ...,∀xn ∈ Xn∃!y ∈ Y H(x1, ..., xn, y).

We will abbreviate it as Z : X1, ..., Xn → Y and H(x1, ..., xn) = y. Using the pairing
function (or encoding of k-tuples), with finite sets we can also code binary (or k-ary)
relations. Finite functions can be represented by their digraphs. For example, to represent
an m×n matrix A with natural number entries we think of it as of a function from [m]×[n]
into N . The matrix is thus encoded by the set A(i, j, a), and we write Aij = a for the
corresponding entry.

We say that a set H is a well-defined map between two sets A, |A| = n and B, |B| = m
if it satisfies the relation

MAP (A,n,B,m,H) ⇐⇒ ∀i ∈ A∃j ∈ B ∧H(i) = j∧
∀i ∈ A∀j1, j2 ∈ B (H(i) = j1 ∧H(i) = j2 → j1 = j2).

(9)
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The counting axiom allows one to count the number of elements in a set. Given a set
X, the census function #X(n) for X is a number function defined for n ≤ |X| such that
#X(n) is the number of x < n, x ∈ X. Thus, #X(|X|) is the number of elements in X.
The following relation says that #X is the census function for X:

Census(X, #X) ⇐⇒ #X ≤ ⟨|X|, |X|⟩ ∧ #X(0) = 0 ∧ ∀x < |X|
(x ∈ X → #X(x+ 1) = #X(x) + 1 ∧ x /∈ X → #X(x+ 1) = #X(x)).

(10)

Lemma 3. For any set X, V 1 proves that there exists its census function.

Proof. Given any set X, consider Σ1,b
1 -induction on n ≤ |X| for the formula

ϕ(n) = ∃H ≤ ⟨n, n⟩H(0) = 0 ∧ ∀ 0 ≤ x < n

(x ∈ X → H(x+ 1) = H(x) + 1 ∧ x /∈ X → H(x+ 1) = H(x)).
(11)

We will now remind the reader a few well-known number-theoretic functions and re-
lations, mainly to fix the notation. They are all definable in a weak subtheory of V 1 and
the stated properties are proved in [9],[15]. The relation of divisibility can be defined by
the formula

x|y ⇐⇒ ∃z ≤ y(xz = y). (12)

We say that p is a prime number if it satisfies the relation

Prime(p) ⇐⇒ 1 < p ∧ ∀y < p∀z < p (yz ̸= p). (13)

It is easily seen that V 1 proves that any x > 0 is uniquely representable by a product of
powers of primes. The limited subtraction a −̇ b = max{0, a− b} can be defined by

c = a −̇ b←→ ((b+ c = a) ∨ (a ≤ b ∧ c = 0)), (14)

and the division ⌊a/b⌋ for b ̸= 0 can be defined as follows:

c = ⌊a/b⌋ ←→ (bc ≤ a ∧ a < b(c+ 1)). (15)

Finally, the remainder of a after being divided by p can be defined by the formula

amod p = a −̇ (p · ⌊a/p⌋). (16)

We say that two numbers are congruent modulo p, denoted c1 ≡ c2(mod p) if c1mod p =
c2mod p. It means that if c1 < c2, then

c1 −̇ (p · ⌊c1/p⌋) = c2 −̇ (p · ⌊c2/p⌋),
c2 −̇ c1 = p(⌊c2/p⌋ −̇ ⌊c1/p⌋),

(17)

i.e. the difference c2 − c1 is divisible by p. Note that it is straightforward to show in V 1

that for all x1 ≡ x2(mod p) and y1 ≡ y2(mod p),

(x1 + y1) ≡ (x2 + y2)(mod p),
(x1y1) ≡ (x2y2)(mod p).

(18)
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3 Zhuk’s four cases

One of the two main ideas of Zhuk’s algorithm is based on strong subalgebras. In this sec-
tion we will give the definitions of absorbing subuniverse, center and central subuniverse,
and polynomially complete algebra and briefly mention their main properties. Further,
we consider the notion of linear algebras as introduced in [19] and give two elementary ex-
amples of relational structures corresponding to linear algebras. Finally, we will formulate
Zhuk’s four-cases theorem.

3.1 Absorption, center and polynomial complete algebras

If B = (B,FB) is a subalgebra of A = (A,FA), then B absorbs A if there exists an n-ary
term operation f ∈ Clone(FA) such that f(a1, ..., an) ∈ B whenever the set of indices
{i : ai /∈ B} has at most one element. B binary absorbs A if there exists a binary term
operation f ∈ Clone(FA) such that f(a, b) ∈ B and f(b, a) ∈ B for any a ∈ A and b ∈ B.

If A = (A,ΩA) is a finite algebra with a special WNU operation, then C ⊆ A is a
center if there exists an algebra B = (B,ΩB) with a special WNU operation of the same
arity and a subdirect subalgebra D = (D,ΩD) of A × B such that there is no nontrivial
binary absorbing subuniverse in B and C = {a ∈ A|∀b ∈ B : (a, b) ∈ D}. Every center is
a ternary absorbing subuniverse. A weaker notion, suggested by Zhuk in [20], is a central
subuniverse. A subuniverse C of A is called central if it is an absorbing subuniverse and
for every a ∈ A\C we have (a, a) /∈ Sg({a} ×C ∪C × {a}). A central subuniverse has all
the good properties of a center and can be used in Zhuk’s algorithm instead of the center.
Both algorithms, with the center or central universe, will correctly answer whether an
instance has a solution, or not.

For any set A denote by On(A) the set of all n-ary operations on A. The clone
of all operations on A is denoted by O(A) = {On(A)|n ≥ 0}. An n-ary operation f
on algebra A = (A,FA) is called polynomial if there exist some (n + t)-ary operation
g ∈ Clone(FA) and constants a1, ..., at ∈ A such that for all x1, ..., xn ∈ A, f(x1, ..., xn) =
g(x1, ..., xn, a1, ..., am). Denote the clone generated by FA and all the constants on A (i.e.
the set of all polynomial operations on A) by Polynom(A). We call an algebra A = (A,FA)
polynomially complete (PC) if its polynomial clone is the clone of all operations onA, O(A).
In simple words, a universal algebra A is polynomially complete if every function on A with
values in A is a polynomial function. A classical result about polynomial completeness
is based on the following notion. The ternary discriminator function is the function t
defined by the identities

t(x, y, z) =
{︄
z, x = y,

x, x ̸= y.

Then Theorem 6 gives a necessary and sufficient condition of polynomial completeness.

Theorem 6 ([5]). A finite algebra is polynomially complete if and only if it has the ternary
discriminator as a polynomial operation.

3.2 Linear algebras: properties and examples on digraphs

Definition 10 (Linear algebra, [19]). An idempotent finite algebra A = (A,Ω), where
Ω is an m-ary idempotent special WNU operation, is called linear if it is isomorphic
to (Zp1 × ... × Zps , x1 + ... + xm) for prime (not necessarily distinct) numbers p1, ..., ps.
For every finite idempotent algebra, there exists the smallest congruence (not necessarily
proper), called the minimal linear congruence, such that the factor algebra is linear.
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To understand how linear algebras appear in Zhuk’s algorithm, and to establish some
of their properties, we consider the notion of an affine algebra. An algebra A = (A,F )
is called affine if there is an abelian group A′ = (A, 0,−,+) such that the relation R =
{(x, y, z, u) : (x + y = z + u)} is preserved by all operations of A [12]. Affine algebra is
polynomially equivalent (has the same polynomial clone) to a module. It means that each
term operation of algebra A is affine with respect to the abelian group A′, i.e. to say, for
any given n-ary operation f ∈ F there are endomorphisms α1, ..., αn of A and an element
a ∈ A such that f can be expressed identically as in [12]:

f(x1, ..., xn) =
n∑︂

i=1
αi(xi) + a.

The following lemma establishes one important property of an affine algebra in case there
is an idempotent WNU operation on A. We will provide its proof as in [18], to make some
notes further.
Lemma 4 ([18]). Suppose A′ = (A, 0,−,+) is a finite abelian group, the relation R ⊆ A4

is defined by R = {(x, y, z, u) : (x + y = z + u)}, R is preserved by an idempotent WNU
m-ary operation Ω. Then Ω(x1, ...xm) = tx1 + ...+ txm for some t ∈ N.
Proof. Define h(x) = Ω(0, 0, ..., 0, x). We will prove the equation

Ω(x1, ..., xi, 0, ..., 0) = h(x1) + ...+ h(xi)
by induction on i. For m = 1 it follows from the definition and properties of WNU. We
know that

Ω

⎛⎜⎜⎜⎝
x1 x2 ... xi xi+1 0 ... 0
0 0 ... 0 0 0 ... 0
x1 x2 ... xi 0 0 ... 0
0 0 ... 0 xi+1 0 ... 0

⎞⎟⎟⎟⎠ ∈ R
is in R, which by the inductive assumption gives

Ω(x1, ..., xi, xi+1, 0, ..., 0) = Ω(x1, ..., xi, 0, 0, ..., 0) + h(xi+1) =
= h(x1) + ...+ h(xi) + h(xi+1).

(19)

We thus know that Ω(x1, ..., xm) = h(x1) + ... + h(xm). Let p be the maximal order
of an element in group A′ = (A, 0,−,+). Then for any element a in A, the order of a
divides p, and in particular pa = 0. For every a ∈ A we have h(a) + h(a) + ...+ h(a)⏞ ⏟⏟ ⏞

m

=

Ω(a, a, ..., a) = a. Thus, for any element a ̸= 0, m · h(a) ̸= 0, hence m does not divide
an order of any element in A′ and therefore m and p are coprime. Hence m has the
multiplicative inverse modulo p and there is some integer t such that tm = 1, m · h(x) =
h(x)/t = x, and h(x) = tx for every x.

If we additionally assume that Ω is special (by Lemma 1), then t = 1:
Ω(x, ..., x,Ω(x, ..., x, y)) = Ω(x, ..., x, y),

tx+ ...+ tx⏞ ⏟⏟ ⏞
m−1

+tΩ(x, ..., x, y) = tx+ ...+ tx⏞ ⏟⏟ ⏞
m−1

+ty,

t(tx+ ...+ tx⏞ ⏟⏟ ⏞
m−1

+ty) = ty,

tx+ ...+ tx⏞ ⏟⏟ ⏞
m−1

+ty + tx = y + tx

x+ ty = y + tx =⇒ t = 1.

(20)
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Consider any finite affine algebra A. Due to the well-known Classification theorem [13]
every finite abelian group is isomorphic to a product of cyclic groups whose orders are all
prime powers. Thus A = Zp1r1×...×Zps

rs for some not necessarily distinct primes p1, ..., ps.
If p is the maximal order of an element in A′, then, by the above proof, m = 1(mod p).
Therefore, since every pi has to divide p, every pi also divides (m − 1). If there is an
idempotent WNU operation on A, then there exists the minimal linear congruence σ such
that A/σ is isomorphic to a linear algebra.

Finally, we will formulate and prove an important theorem used in Zhuk’s algorithm.

Theorem 7 (Affine subspaces [19]). Suppose that relation ρ ⊆ (Zp1)n1 × ... × (Zpk
)nk is

preserved by x1 + ...+ xm, where p1, ..., pk are distinct prime numbers dividing m− 1 and
Zpi = (Zpi , x1 + ...+ xm) for every i. Then ρ = L1 × ...× Lk, where each Li is an affine
subspace of (Zpi)ni.

Proof. We first derive a ternary operation on every Zpi .

f(x, y, z) = x− y + z (mod pi) = Ω(x, z, 0, ..., 0) + Ω(y, ..., y, 0, 0) =
= x+ z + y + ...+ y = Ω(x, z, y, ..., y).

(21)

Thus, f(x, y, z) preserves ρ. Now consider the relation ρ ⊆ (Zp1)n1 × ... × (Zpk
)nk and

choose any element a ∈ ρ. The set V⃗ = {v|a + v ∈ ρ} obviously contains 0. Moreover, it
is closed under +. Consider any v1, v2 ∈ V⃗ , a + v1, a + v2 ∈ ρ. Then v1 + v2 ∈ V⃗ since
f(a + v1, a, a + v2) = a + v1 + v2 ∈ ρ. Thus, V⃗ is a linear subspace and ρ is therefore an
affine subspace.

In the remainder of this subsection we will give two elementary examples of constraint
languages corresponding to linear algebras. We will consider classical digraphs, relational
structures with unique binary relation of being an edge. Due to Theorem 1, each relational
structure A corresponds to an algebra A such that Clone(A) = Pol(A). We can assume
that for both CSP instances there is a special WNU operation Ω of some arity m, which
is a polymorphism for all constraint relations.

x0

x1

x2

X

a b

A

Figure 4: Example 1.

Consider CSP(A), where A = (VA, EA) is the digraph on two vertices and EA =
{(a, b)}. An instance of CSP(A), depicted in Figure 4, is the digraph X = (VX , EX ),
where VX = {x0, x1, x2} and EX = {(x0, x1), (x1, x2)}. It is obvious that there is no
homomorphism from X to A. Let us define a 3-ary operation Ω on VA as follows:

Ω(a, a, a) = a, Ω(b, b, b) = b,

Ω(b, a, a) = Ω(a, b, a) = Ω(a, a, b) = b,

Ω(a, b, b) = Ω(b, a, b) = Ω(b, b, a) = a.

(22)
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Ω preserves EA and is clearly idempotent, WNU and special:

Ω(a, a,Ω(a, a, b)) = Ω(a, a, b) = b,

Ω(b, b,Ω(b, b, a)) = Ω(b, b, a) = a.
(23)

We can define an operation + on VA as (a+x) = (x+a) = x (i.e. a is zero) and (b+b) = a
(i.e. b is an inverse element to itself). Hence A = (VA,+) is a finite abelian group, namely
Z2, and the algebra (VA,Ω) is isomorphic to linear algebra (Z2, x+ y + z).

The instance has two constraints, EX (x0, x1) ⊆ Z2 × Z2 and EX (x1, x2) ⊆ Z2 × Z2.
Since EA = {(a, b)} is an affine subspace of Z2 × Z2, we can express constraints as a
conjunction of the linear equations

EX (x0, x1) ⇐⇒
{︄
x0 = a,
x1 = b.

EX (x1, x2) ⇐⇒
{︄
x1 = a,
x2 = b.

The instance can be viewed as a system of linear equations in different fields and it has
no solution.

Now consider a different example in Figure 5, where A = (VA, EA) is the digraph on
two vertices with EA = {(a, b), (b, a)}, and the instance digraph X = (VX , EX ) is the
same.

x0

x1

x2

X

a b

A

Figure 5: Example 2.

Since the constraint relation EA is still preserved by above defined Ω, (VA,Ω) is iso-
morphic to (Z2, x + y + z). But EA differs from the relation in the previous example, so
we can express constraints as the linear equations

EX (x0, x1) ⇐⇒ x0 + x1 = b;
EX (x1, x2) ⇐⇒ x1 + x2 = b.

(24)

This system has two solutions, S1 = {x0 = x2 = a, x1 = b} and S2 = {x0 = x2 = b, x1 =
a}, and the instance is therefore satisfiable.

3.3 Zhuk’s four-cases theorem

Zhuk’s algorithm is based on the following theorem:

Theorem 8 ([19]). If A is a nontrivial finite idempotent algebra with WNU operation,
then at least one of the following is true:

• A has a nontrivial binary absorbing subuniverse,
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• A has a nontrivial centrally absorbing subuniverse,

• A has a nontrivial PC quotient,

• A has a nontrivial affine quotient.

4 Zhuk’s algorithm
Here we will briefly sketch the leading ideas of Zhuk’s algorithm without any details.
All details necessary for the formalization will be given directly in the corresponding
subsections. For more information we send the reader to the original paper [19].

In this section we will consider an arbitrary constraint language (since the algorithm
is designed for all finite languages). Before running the algorithm, it is necessary to make
a slight modification of the constraint language. Suppose we have a finite language Γ′

that is preserved by an idempotent WNU operation Ω′. By Lemma 1, Γ′ is therefore also
preserved by a special WNU operation Ω. Let k′ be the maximal arity of the relations
in Γ′ and denote by Γ the set of all relations of arity at most k′ that are preserved by Ω.
Hence all pp-definable relations of arity at most k′ are in Γ, and CSP(Γ′) is an instance of
CSP(Γ).

The common property of all parts of the algorithm is that any time when it reduces
or restricts domains, the algorithm uses recursion.

4.1 Outline of the general part

The key notion of the general part of Zhuk’s algorithm is reduction, which is divided into
several procedures. Consider a CSP instance of CSP(Γ), Θ = (X,D,C). In this part, the
algorithm gradually reduces different domains until it terminates in the linear case. At
every step, it either produces a reduced domain or moves to the other type of reduction,
or answers that there is no solution (if some domain is empty after one of the procedures).
After outputting any reduced domain, the algorithm runs all from the beginning for the
same instance Θ but with a smaller domain D′.

First, the algorithm reduces domains until the instance is cycle-consistent. Then it
checks irreducibility: again, if the instance is not irreducible, the algorithm can produce a
reduction to some domain. The next step is to check a weaker instance that is produced
from the instance by simultaneously replacing all constraints with all weaker constraints:
if the solution set to such an instance is not subdirect, then some domain can be reduced.

After these types of consistency, the algorithm checks whether some domains have a
nontrivial binary absorbing subuniverse or a nontrivial center. If any of them does, the
algorithm reduces the domain to the subuniverse or to the center. Then it checks whether
there is a proper congruence on any domain such that its factor algebra is polynomially
complete. If there is such a congruence, then the algorithm reduces the domain to an
equivalence class of the congruence.

By Theorems 9, 10 and 11, proved by Zhuk in [19], if the reduced instance has no
solution, then so does the initial one.

Theorem 9 ([19]). Suppose Θ is a cycle-consistent irreducible CSP instance, and B is a
nontrivial binary absorbing subuniverse of Di. Then Θ has a solution if and only if Θ has
a solution with xi ∈ B.

Theorem 10 ([19]). Suppose Θ is a cycle-consistent irreducible CSP instance, and B is a
nontrivial center of Di. Then Θ has a solution if and only if Θ has a solution with xi ∈ B.
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Theorem 11 ([19]). Suppose Θ is a cycle-consistent irreducible CSP instance, there does
not exist a nontrivial binary absorbing subuniverse or a nontrivial center on Dj for every
j, (Di,Ω)/σi is a polynomially complete algebra, and E is an equivalence class of σi. Then
Θ has a solution if and only if Θ has a solution with xi ∈ E.

Finally, if the algorithm cannot reduce any domain of the CSP instance Θ any further,
by Theorem 8 it means that every domain Di of size greater than 1 has a nontrivial affine
quotient. Since we consider the special WNU operation Ω, for every domain Di there
exists a congruence σi such that (Di,Ω)/σi is isomorphic to (Zp1 × ...×Zpl

, x1 + ...+ xm)
for some prime numbers p1, ..., pl. The algorithm then proceeds with procedures embraced
in the linear case.

4.2 Outline of the linear case

The linear case of Zhuk’s algorithm is adopted from [19]. Suppose that on every domain
Di there exists the proper minimal linear congruence σi such that (Di,Ω)/σi is linear, i.e.
isomorphic to (Zp1 × ...×Zpl

, x1 + ...+ xm) for some prime numbers p1, ..., pl, where m is
the arity of Ω.

Denote each Di/σi by Li and define a new CSP instance ΘL with domains L1, ..., Ln

as follows: to every constraint (xi1 , ..., xis ;R) ∈ Θ assign a constraint (x′
i1 , ..., x

′
is

;R′),
where R′ ∈ Li1 × ... × Lis and a tuple of blocks of congruences (E1, ..., Es) ∈ R′ ⇐⇒
(E1 × ...× Es) ∩R ̸= ∅. From now we will refer to the instance Θ as the initial instance,
and to ΘL as the factorized one.

Since each Li = Di/σi is isomorphic to some Zs1 × ... × Zsl
, we can define a natural

bijective mapping ψ : Zp1 × ...×Zpr → L1× ...×Ln and assign a variable zi to every Zpi .
By Theorem 7 every relation on Zp1 × ...× Zpr preserved by Ω(x1, ..., xm) = x1 + ...+ xm

is an affine subspace, the instance ΘL can thus be viewed as a system of linear equations
over z1, ..., zr. Every linear equation is an equation in Zpi , and only variables ranging over
the same field Zpi may appear in one equation.

The algorithm compares two sets: the solution set to the initial instance Θ factorized
by congruences (let us denote it by SΘ/Σ) and the solution set to the factorized instance,
SΘL

. It is known that SΘ/Σ ⊆ SΘL
. We do not know SΘ/Σ, but we can efficiently calcu-

late SΘL
using Gaussian Elimination (since Gaussian Elimination is strongly polynomial

[10]). If ΘL has no solution, then so does the initial instance. If the solution has no
independent variables (i.e. there is only one solution and the dimension of the solution
set is 0), the algorithm checks whether the initial instance Θ has the solution correspond-
ing to this solution by restricting every domain Di of Θ to the corresponding congruence
blocks and recursively calling the algorithm for these smaller domains. Otherwise, the
algorithm arbitrarily chooses independent variables y1, ..., yk of the general solution to ΘL

(the dimension of the solution set SΘL
is k).

The set SΘL
can be defined as an affine mapping ϕ : Zq1×...×Zqk

→ L1×...×Ln. Thus,
any solution to ΘL can be obtained as ϕ(a1, ..., ak) for some (a1, ..., ak) ∈ Zq1 × ...× Zqk

.
The algorithm denotes an empty set of linear equations by Eq. The following steps

will be repeated until the algorithm either finds a solution or answers that SΘ/Σ is empty.
The idea is to add equations iteratively to the solution set SΘL

maintaining the property
SΘ/Σ ⊆ SΘL

∪Eq. Since the dimension of SΘL
is k, and at every iteration the algorithm

reduces the dimension by at least one, the process will eventually stop.
First of all, the algorithm checks whether Θ has a solution corresponding to ϕ(0, ..., 0)

by recursively calling the algorithm for smaller domains. If it does, the algorithm stops
with a solution, if it does not, it has established the property SΘ/Σ ⊊ SΘL

. Then the
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SΘL

SΘL
∪ Eq

SΘ/Σ

Figure 6: Solution sets.

algorithm starts to decrease the solution set SΘL
. It always starts with the initial instance

Θ, gradually makes it weaker and at every weakening checks whether the solution set to
this new weaker instance is equal to SΘL

.
To make Θ weaker, the algorithm arbitrarily chooses a constraint C and replaces it

with all weaker constraints without dummy variables simultaneously. Let us denote this
instance by Θ′. To check whether the solution set SΘ′/Σ to Θ′ factorized by congruences
is equal to SΘL

, one needs to check whether Θ′ has solutions corresponding to ϕ(a1, ..., ak)
for every (a1, ..., ak) ∈ Zq1 × ...× Zqk

(using recursion for smaller domains). Since SΘ′/Σ
and SΘL

are subuniverses of L1 × ...×Ln, it is enough to check the existence of solutions
corresponding to ϕ(0, ..., 0) and ϕ(0, ..., 1, ..., 0) for any position of 1. If the solution set
to the weaker instance Θ′ does not contain SΘL

, the algorithm proceeds with weakening
the instance Θ′ step by step until it cannot make the instance weaker without obtaining
SΘL

⊆ SΘ′/Σ (at this point the algorithm checks that whichever constraint it weakens,
every solution to ΘL will be a solution to Θ′). It means that there exists some (b1, ..., bk)
∈ Zq1 × ... × Zqk

such that Θ′ has no solution corresponding to ϕ(b1, ..., bk). However,
if we replace any constraint C ∈ Θ′ with all weaker constraints simultaneously, then we
get an instance that has a solution corresponding to ϕ(a1, .., ak) for every (a1, ..., ak) ∈
Zq1 × ...× Zqk

.
Finally, the algorithm finds the solution set SΘ′/Σ to the instance Θ′ factorized by

congruences by finding new equations additional to the set SΘL
. There are different

strategies for linked and non-linked instances Θ′. For linked instance, it is known that
SΘ′/Σ ⊊ SΘL

is of codimension 1, so we can find only one equation and add it to SΘL
. For

non-linked instance Θ′ we find all equations that describe SΘ′/Σ, and then intersect these
equations with SΘL

(see [19]). After new equations are found, the algorithm adds them
to the set Eq, solves SΘL

∪ Eq using Gaussian Elimination, and runs another iteration.
Remark 1. By Theorem 7, SΘL

⊆ (Zp1)n1× ...×(Zpk
)nk is an affine subspace. The solution

set SΘ/Σ to the initial instance factorized by congruences is also an affine subspace: the
relation that describes it is a subset of SΘL

, i.e. it is also preserved by Ω. Moreover, when
we consider the solution set SΘ′/Σ to the weaker instance Θ′ factorized by congruences,
it is also an affine subspace since all weaker constraints are in Γ.

5 Soundness of Zhuk’s algorithm in a theory of bounded
arithmetic

To prove the soundness of Zhuk’s algorithm in some theory of bounded arithmetic, it
is sufficient to prove that after every step of the algorithm one does not lose all the
solutions to the initial instance. Consider any relational structure A with at most binary
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relations and some negative instance Θ = (X , Ä) of CSP(A), and suppose that there is a
homomorphism from X to Ä. If the elected theory of bounded arithmetic proves that after
every step of the algorithm the new modified instance has solutions only if the previous
one does, and the algorithm terminates with no solution, then the theory proves - by its
level of bounded induction - that X is unsatisfiable, and hence that ¬HOM(X , Ä) is a
tautology.

Consider computation of the algorithm on (X , Ä), W = (W1,W2, ...,Wk), where:

• W1 = (X , Ä);

• Wi+1 = (Xi+1, Äi+1) is obtained from Wi = (Xi, Äi) by one algorithmic step (Xi+1
and Äi+1 are some modifications of relational structures Xi, Äi);

• Wk has no solution.

We need to prove, for all types of algorithmic modifications, that if Wi has a solution,
then Wi+1 also has a solution. This will prove that if the algorithm terminates with no
solution, then there is no homomorphism from X to Ä. Note that it is unnecessary to prove
the opposite direction when considering soundness. Moreover, neither it is necessary to
prove that the algorithm is well-defined. The transcription of the algorithm’s computation
can include all auxiliary necessary information.

In the formalization of the algorithm we will incorporate some modifications and ad-
justments suggested by Zhuk in his later paper [20]. We also sometimes will omit some
intermediate steps and other technicalities not affecting the result. We will explicitly
highlight all points that distinguish this version of the algorithm from the original one.

In the paper we shall prove the soundness of Zhuk’s algorithm in a new theory of
bounded arithmetic, namely V 1 augmented with three universal algebra axioms, which
will be defined in the next section.

5.1 Defining a new theory of bounded arithmetic

In this section we will define a new theory of bounded arithmetic that will extend the theory
V 1. Before moving to this section, we recommend that the reader recall subsections 2.4
and 2.5.

5.1.1 Arrangements before the run of the algorithm

We will consider only relational structures that contain at most binary relations, and
algebras corresponding to them, see Theorem 5. The algorithm works for any finite algebra
having a WNU term and uses the fact that this term and all the properties of the algebra
are known in advance. From here on out we fix algebra A = (A,Ω) and suppose that the
only basic operation on A is idempotent special WNU operation Ω. Algebras with richer
signatures can be treated in a similar way, extending all conditions imposed on Ω to other
(know in advance) basic operations.

Since at the beginning Zhuk’s algorithm adds to a constraint language Γ all relations
preserved by Ω, of the arity up to the maximal arity of relations in Γ, we will consider the
finite set of all relations of arity at most 2, invariant under Ω, which we know in advance.
Let us denote this set by ΓA, and the relational structure by A = (A,ΓA). Any time when
in formulas we claim something about this set, it means that we claim this about each
relation in this set.

A new theory of bounded arithmetic will extend the theory V 1. Before we introduce
this theory, we need to define in V 1 notions from different areas of mathematics.
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5.1.2 Encoding relational structure

We encode the finite universe A of size l by the set A,∀i < l, A(i), and ΓA as a pair of sets
(Γ1

A,Γ2
A) where Γ1

A is the set which encodes all unary relations from ΓA, and Γ2
A encodes

binary relations,

Γ1
A(j, a) ⇐⇒ D1

j (a) and Γ2
A(i, a, b) ⇐⇒ E2

i (a, b).

Note that in the list of ΓA there are all possible subalgebras of A (i.e. all possible domains
and strong subsets), and all possible pp-definitions constructed from unary and binary
relations preserved by Ω. When consider a subset D of A, we will denote by ΓD the set of
unary and binary relations from ΓA restricted to the set D.

Among binary relations Γ2
A there are all congruences on A and on all its subalgebras.

Let us denote this set by ΣA. Since for any subalgebra D any congruence of A is also a
congruence of D, the formula

D1
j (a) ∧D1

j (b) ∧ ΣA(i, a, b)

defines a congruence on some D. The number of all possible congruences on A is bounded
by 2|A|2 .

5.1.3 Encoding special WNU operation and polymorphism

We can define a special WNU operation of fixed arity m on some set A in the theory V 1

in several steps. We say that a set F is an m-ary operation F : Am → A on a set A if it
satisfies the relation

OPm(F,A) ⇐⇒ ∀x0, ..., xm−1 ∈ A,∃y ∈ A, F (x0, ..., xm−1) = y∧
∧∀y1, y2 ∈ A (F (x0, ..., xm−1) = y1 ∧ F (x0, ..., xm−1) = y2 → y1 = y2).

(25)

An idempotent operation F is defined straightforwardly:

IDMm(F,A) ⇐⇒ OPm(F,A) ∧ ∀a ∈ A F (a, a, ..., a) = a. (26)

We say that a set Ω is a WNU operation of arity m on the set A if it satisfies the relation

wNUm(Ω, A) ⇐⇒ OPm(Ω, A) ∧ ∀a, b ∈ A,∃c ∈ A,∀x0, ..., xm−1 ∈ A⋀︂
t<m

(xt = a ∧ ∀j ̸= t < m, xj = b→ Ω(x0, ..., xm−1) = c). (27)

A special WNU operation is defined as follows:

SwNUm(Ω, A) ⇐⇒ wNUm(Ω, A) ∧ IDMm(Ω, A)
∀a, b ∈ A,∃c ∈ A, Ω(a, ..., a, b) = c ∧ Ω(a, ..., a, c) = c.

(28)

Since we work with relations of arity at most 2, we will define polymorphisms only for
relations of this arity. We say that a set F is an operation of arity m on the set A that
preserves 2-ary relation R on A if it satisfies the following relation

Polm,2(F,A,R) ⇐⇒ OPm(F,A) ∧ ∀a0
1, ..., a

m−1
1 , a0

2, ..., a
m−1
2 ∈ A,

∀b1, b2 ∈ A, R(a0
1, a

0
2) ∧ ... ∧R(am−1

1 , am−1
2 )∧

∧F (a0
1, ..., a

m−1
1 ) = b1 ∧ F (a0

2, ..., a
m−1
2 ) = b2 → R(b1, b2).

(29)

21



Finally, operation F preserves 1-ary relation R on A if

Polm,1(F,A,R) ⇐⇒ OPm(F,A) ∧ ∀a0, a1, ..., am−1 ∈ A,
∀b ∈ A R(a0) ∧ ... ∧R(am−1)∧
∧F (a0, ..., am−1) = b→ R(b).

(30)

We will omit the second index i in Polm,i when we refer to the whole set of relations ΓA.

5.1.4 Encoding notions from universal algebra

A finite algebra with special WNU operation of size l is a pair of sets A = (A,Ω), where
|A| = l, A(i) for every i, and Ω is a ((m+1)l)2m+1 set representing a special WNU operation
on A. We will call this pair a Taylor algebra and denote it by TA(A,Ω). From here on
out under algebra we mean Taylor algebra. We say that B = (B,Ω) is a subalgebra of
algebra A if

subTA(B,A) ⇐⇒ |B| = |A| ∧ ∀i < l, B(i)→ A(i) ∧ SwNU(Ω, B). (31)

Note that condition SwNU(Ω, B) ensures that B is closed under operation Ω. The differ-
ence between fixed algebra A and all its subalgebras and factor algebras is that the size of
all these objects is bounded by l, but since it is not necessary that for all i < l, B(i), we
will measure their size by census function, #B(l). We say that a pair of sets B = (B,Ω) is
a direct product of k algebras A0 = (A0,Ω0), ...,Ak−1 = (Ak−1,Ωk−1) of the same type if

DPm,k(B,Ω, A0,Ω0, ..., Ak−1,Ωk−1) ⇐⇒ ∀a0 ∈ A0, ..., ak−1 ∈ Ak−1,

B(a0, ..., ak−1) ∧ ∀a1
0, a

2
0, ..., a

m
0 ∈ A0, ..., a

1
k−1, a

2
k−1, ..., a

m
k−1 ∈ Ak−1

Ω(a1
0, a

2
0, ..., a

m
0 , ..., a

1
k−1, a

2
k−1, ..., a

m
k−1) =

= (Ω0(a1
0, a

2
0, ..., a

m
0 ), ...,Ωk−1(a1

k−1, a
2
k−1, ..., a

m
k−1)).

(32)

We will denote (B,Ω) by (A0×...×Ak−1,Ω). A subdirect k-ary relation R on A0×...×Ak−1
is encoded as follows:

subDRk(R,A0, ..., Ak−1) ⇐⇒
⋀︂
i<k

∀ai ∈ Ai,∃a0 ∈ A0, ..., ai−1 ∈ Ai−1,

ai+1 ∈ Ai+1, ..., ak−1 ∈ Ak−1, R(a0, ..., ai−1, ai, ai+1, ..., ak−1.)
(33)

We say that a set σ < l2 is a congruence relation on the algebra A = (A,Ω) if it satisfies
the following relation

Congm(A,Ω, σ) ⇐⇒ Polm,2(Ω, A, σ)∧
∀a ∈ A, σ(a, a) ∧ ∀a, b ∈ A, (σ(a, b)↔ σ(b, a))∧

(∀a, b, c ∈ A, σ(a, b) ∧ σ(b, c)→ σ(a, c)).
(34)

Condition Polm,2(Ω, A, σ) ensures that σ is from Inv(Pol(ΓA)). Recall that all congru-
ences on A are listed in ΣA. If we additionally require that

(∃x, y ∈ A¬σ(x, y)) ∧ (∃x ̸= y ∈ A σ(x, y)), (35)

the congruence σ will be proper. A maximal congruence (a congruence over which there
is no other congruences except the full binary relation ∇) can be defined as follows:

maxCongm(A,Ω, σ) ⇐⇒ Congm(A,Ω, σ) ∧ ∃a, b ∈ A, ¬σ(a, b)∧
∧[∀σ′ < ⟨l, l⟩, (Congm(A,Ω, σ′) ∧ ∃a, b ∈ A, ¬σ′(a, b))→

→ ∃a, b ∈ A, σ(a, b) ∧ ¬σ′(a, b)].
(36)
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Note that this is a Π1,b
1 -formula. A factor set is the set of all equivalence classes under

the congruence σ and it will be denoted by A/σ. We can represent each block of σ by its
minimal element (it exists by the Minimal principle). Therefore, we think of the factorized
object A/σ as of a set of numbers as well:

FSm(A/σ,A,Ω, σ) ⇐⇒ Congm(A,Ω, σ)∧
∀a, b ∈ A, (σ(a, b) ∧ (a < b)→ ¬A/σ(b))

∧(∀a ∈ A(∀a′ ∈ A, σ(a, a′)→ a ≤ a′)→ A/σ(a)).
(37)

We say that a is a represent of the class a/σ (where a/σ is just a notation, it is any element
of A) if

Repm(a, a/σ,A/σ,A,Ω, σ) ⇐⇒ FSm(A/σ,A,Ω, σ)∧
σ(a, a/σ) ∧A/σ(a).

(38)

Finally, we can define the factor algebra A/σ = (A/σ,Ω/σ):

FAm(A/σ,Ω/σ,A,Ω, σ) ⇐⇒ FSm(A/σ,A,Ω, σ)∧
∧

(︁
∀a1, ..., am, c ∈ A,∀a1/σ, ..., am/σ, c/σ ∈ A,

Ω(a1/σ, ..., am/σ) = c/σ ∧Repm(c, c/σ,A/σ,A,Ω, σ)∧
∧

⋀︂
i<m

Repm(ai, ai/σ,A/σ,A,Ω, σ)→ Ω/σ(a1, ..., am) = c
)︁
.

(39)

Thus, we define the operation Ω/σ on minimal elements of the congruence classes.

5.1.5 Encoding digraphs and CSP properties

We will code a CSP instance on relational structures with at most binary relations in the
following way.

Definition 11. A directed input graph is a pair X = (VX , EX ) with VX (i) for all i <
VX = n and EX (i, j) being a binary relation on VX (there is an edge from i to j). A target
digraph with domains is an (n+ 2)-tuple of sets Ä = (VÄ, EÄ, D0, ..., Dn−1), where

• VÄ < ⟨n, l⟩ is the set corresponding to the superdomain,

• ∀i < n, Di < l is the subset of length l corresponding to the domain of variable xi,

• VÄ(i, a) ⇐⇒ Di(a),

• EÄ < ⟨⟨n, l⟩, ⟨n, l⟩⟩ is the set encoding relations Eij

Ä(a, b) (there is an edge (a, b)
between Di and Dj):

EÄ(u, v)→ ∃i, j < n ∃a, b < l u = ⟨i, a⟩ ∧ v = ⟨j, b⟩∧
Di(a) ∧Dj(b).

(40)

Sometimes we will use the notation Eij

Ä(a, b) instead of EÄ(⟨i, a⟩, ⟨j, b⟩) for brevity sake.
We will denote a pair of sets Θ = (X , Ä), satisfying all above conditions, by DG(Θ), and
will call Θ an instance. This representation will allow us to construct a homomorphism
from X to Ä with respect to different relations Eij

Ä and different domains for all vertices
x1, ..., xn.
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Definition 12 (Homomorphism from digraph X to digraph with domains Ä). A map H
is a homomorphism between input digraph X = (VX , EX ), VX = n and target digraph with
domains Ä = (VÄ, EÄ, D0, ..., Dn−1), VA < ⟨n, l⟩ if H is a homomorphism from X to Ä
sending each i ∈ VX to domain Di in VÄ. The statement that there exists such an H can
be expressed by the Σ1,b

1 -formula

HOM¨ (X , Ä) ⇐⇒ ∃H < ⟨n, ⟨n, l⟩⟩
(︁
MAP (VX , n, VÄ, ⟨n, l⟩, H)∧

(∀i < n, s < ⟨n, l⟩ H(i) = s→ ∃a < l, s = ⟨i, a⟩ ∧Di(a))∧
∀i1, i2 < n,∀j1, j2 < ⟨n, l⟩

(EX (i1, i2) ∧H(i1) = j1 ∧H(i2) = j2 → EÄ(j1, j2)).

(41)

Besides a homomorphism between two digraphs of different types, we will also need
a classical homomorphism between digraphs of the same type. The existence of such a
homomorphism between digraphs G and H with VG < n, VG < m can be expressed by the
following Σ1,b

1 -formula

HOM(G,H) ⇐⇒ ∃H < ⟨n,m⟩
(︁
MAP (VG , n, VH,m,H)∧

∀i1, i2 < n,∀j1, j2 < m

(EG(i1, i2) ∧H(i1) = j1 ∧H(i2) = j2 → EH(j1, j2))
)︁
.

(42)

Notation 4. Sometimes we will write ∃H < ⟨n,m⟩, HOM(G,H, H) and ∃H < ⟨n, ⟨n, l⟩⟩,
HOM¨ (X , Ä, H) to omit repetitions.

For an instance Θ = (X , Ä) we call an instance Θ′ = (X ′, Ä) a subinstance of Θ if

subInst(X ′,X ) ⇐⇒ subS(VX ′ , VX ) ∧ subS(EX ′ , EX )∧
(EX ′(x1, x2)→ x1, x2 ∈ VX ′).

(43)

That is, the target digraph with domains Ä does not change, the set of vertices VX ′ is a
subset of VX , and the set of constraints EX ′ is a subset of EX defined only on VX ′ .

We need to encode three properties of a CSP instance: cycle-consistency, being a
linked instance, and irreducibility. In order to certify the quantification complexity of the
formulas, we will introduce them explicitly. Recall that we refer to any path or cycle with
the edges not necessarily directed in the same direction as an undirected path or cycle.
We say that a digraph Ct = (VCt , ECt) with VCt = {0, 1, ..., t− 1} is an undirected cycle of
length t if it satisfies the following Σ1,b

0 -definable relation

CY CLE(Ct) ⇐⇒ (ECt(0, t− 1) ∨ ECt(t− 1, 0))∧
∀i < (t− 1) (ECt(i, i+ 1) ∨ ECt(i+ 1, i))∧

∀i, j < (t− 1)(j ̸= i+ 1→ (¬ECt(i, j) ∧ ¬ECt(j, i)).
(44)

We will define cycle-consistency through two homomorphisms.

Definition 13 (Cycle-consistent instance). An instance Θ = (X , Ä) with VX = n, VÄ <

⟨n, l⟩ is 1-consistent if it satisfies the following Σ1,b
0 -definable relation

1C(X , Ä) ⇐⇒ ∀i < n,∀a ∈ Di,∀j < n,

(EX (i, j)→ ∃b ∈ Dj , E
ij
A(a, b)) ∧ (EX (j, i)→ ∃b ∈ Dj , E

ji
A(b, a)).

(45)

The instance Θ = (X , Ä) is cycle-consistent if it is 1-consistent and any undirected cycle
Ct that can be homomorphically mapped into X with H(0) = xk can be homomorphically
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mapped into Ä for any a ∈ Dk. Cycle-consistency is expressed by the following Π1,b
2 -

formula
CCInst(X , Ä) ⇐⇒ 1C(X , Ä) ∧ ∀k < n,∀a ∈ Dk, ∀t < n,∀VCt = t,

∀ECt ≤ 4t2,∀H < ⟨t, n⟩,
[︁
CY CLE(VCt , ECt) ∧HOM(Ct,X , H) ∧H(0, k)

→ ∃H ′ < ⟨t, ⟨t, l⟩⟩, HOM¨ (Ct, Ä, H ′)∧
∧∀i < n, j < t (H(j) = i→ ∃b ∈ Di, H

′(j) = ⟨i, b⟩) ∧H ′(0) = ⟨k, a⟩
]︁
.

(46)

Note that for any cycle-consistent instance Θ = (X , Ä), any its subinstance Θ′ =
(X ′, Ä) is also cycle-consistent. For any i, j ∈ X ′ the constraint relations Di, Dj , Eij

Ä
remain the same. We have just removed some vertices from X and have removed some
edges from EX . This does not affect the cycle-consistency property: for any i ∈ X ′, any
a ∈ Di, any existing in Θ′ path starting and ending in i must connect a and a.

We say that a digraph Pt = (VPt , EPt) with VPt = {0, 1, ..., t} is an undirected path of
length t if it satisfies the Σ1,b

0 -definable relation

PATH(Pt)←→ ∀i < t (EPt(i, i+ 1) ∨ EPt(i+ 1, i))∧
∀i < t, j ≤ t(j ̸= i+ 1→ (¬ECt(i, j) ∧ ¬ECt(j, i)).

(47)

For any two paths Pt and Pm of length t and m we will define the following notions.
The reverse path P−1

t is defined as:

VPt = VP−1
t

= (t+ 1) ∧ ∀i < t,

EP−1
t

(i, i+ 1)↔ EPt(t− i, t− (i+ 1)) ∧ EP−1
t

(i+ 1, i)↔ EPt(t− (i+ 1), t− i).
(48)

The glued path Pt ◦ Pm is defined as:

VPt◦Pm = (t+m+ 1)∧
∧∀i < t, EPt◦Pm(i, i+ 1)↔ EPt(i, i+ 1) ∧ EPt◦Pm(i+ 1, i)↔ EPt(i+ 1, i)∧

∧∀t ≤ j < (t+m),
EPt◦Pm(j, j + 1)↔ EPm(j − t, j + 1− t))∧
∧EPt◦Pm(j + 1, j)↔ EPm(j + 1− t, j − t)).

(49)

We say that there is a path from i to j in the input digraph X if there exists a path
Pt of some length t that can be homomorphically mapped to X such that H(0) = i and
H(t) = j:

Path(i, j,X ) ⇐⇒ ∃t < n,∃VPt = t,∃EPt ≤ 4t2, PATH(VPt , EPt)∧
∧∃H ≤ ⟨t, n⟩, HOM(Pt,X , H) ∧ (H(0, i) ∧H(t, j)).

(50)

We say that the path Pt connects i and j. Also, we can encode what it means to be
linked for two elements a ∈ Di, b ∈ Dj . In words, there must exist a path Pt of some
length t connecting i, j with homomorphism H such that there exists a homomorphism
H ′ from Pt to Ä sending 0 to ⟨i, a⟩ and t to ⟨j, b⟩, and for every element p < t, H(p) = k

implies that H(p) = ⟨k, c⟩ for some c ∈ Dk. We can express it by the Σ1,b
1 -formula

Linked(a, b, i, j,Θ) ⇐⇒ ∃t < nl, ∃VPt = t,∃EPt ≤ 4t2,
∃H ≤ ⟨t, n⟩, PATH(VPt , EPt) ∧HOM(Pt,X , H) ∧ (H(0, i) ∧H(t, j))∧

∧∃H ′ ≤ ⟨t, ⟨t, l⟩⟩, HOM¨ (Pt, Ä, H ′)∧
∧(∀k < n, p < t, (H(p, k)→ ∃c ∈ Dk, H

′(p) = ⟨k, c⟩))
∧H ′(0) = ⟨i, a⟩ ∧H ′(t) = ⟨j, b⟩.

(51)

25



Notation 5. Sometimes we will write ∃Pt < ⟨n, 4n2⟩, Path(i, j,X ,Pt) and ∃Pt < ⟨nl,
4(nl)2⟩, Linked(a, b, i, j,Θ,Pt) to omit repetitions.
Definition 14 (Linked instance). We say that an instance Θ = (X , Ä) with VX = n,
VÄ < ⟨n, l⟩ is linked if it satisfies the following Σ1,b

1 -relation

LinkedInst(X , Ä) ⇐⇒ ∀i < n,∀a, b ∈ Di, Linked(a, b, i, i,Θ). (52)

To define irreducibility we need to encode a fragmented instance and a subdirect so-
lution set.
Definition 15 (Fragmented instance). A fragmented instance is an instance whose input
digraph X is not connected. For an instance Θ = (X , Ä) with VX = n we define this by
the following Σ1,b

1 -definable relation, where PSS encodes a proper subset.

FragmInst(X , Ä) ⇐⇒ ∃V 1
X ,∃V 2

X , V
1

X = V 2
X = n∧

∧PsubS(V 1
X , VX ) ∧ PsubS(V 2

X , VX ) ∧ (∀i < n, V 1
X (i)↔ ¬V 2

X (i))∧
∧∀i ∈ V 1

X ,∀j ∈ V 2
X , ¬EX (i, j) ∧ ¬EX (j, i).

(53)

We say that the instance Θ = (X , Ä) has a subdirect solution set if there is a solution
to the instance for all a ∈ Di, i ∈ {0, ..., n− 1}. It can be expressed by the Σ1,b

1 -formula

subDSSInst(X , Ä) ⇐⇒ ∀i < n∀a ∈ Di, ∃H ′ < ⟨n, ⟨n, l⟩⟩
HOM¨ (X , Ä, H) ∧H(i) = ⟨i, a⟩.

(54)

Now we are ready to define irreducibility.
Definition 16 (Irreducible instance). We say that an instance Θ = (X , Ä) with VX = n,
VÄ < ⟨n, l⟩ is irreducible if any its subinstance is fragmented, or linked, or its solution set
is subdirect. To express it we use the Π1,b

2 -formula

IRDInst(X , Ä) ⇐⇒ ∀X ′ = (VX ′ , EX ′),∀VX ′ = n,∀EX ′ < 4n2,(︁
subInst(X ′,X )→

→ FragmInst(X ′, Ä) ∨ LinkedInst(X ′, Ä) ∨ subDSSInst(X ′, Ä)
)︁
.

(55)

Finally, we will introduce the relation indicating that Θ = (X , Ä) is an instance of
CSP(ΓA) for the relational structure A = (A,ΓA). Since ΓA contains at most binary
relations and is closed under pp-definition, we indeed can identify all constraints posed
on variables xi, xj with two unary relations (domains Di, Dj) and one binary relation Eij

Ä
from the list.
Definition 17. A pair of sets Θ = (X , Ä) is a CSP instance over constraint language ΓA
on A of size l if the following Σ1,b

0 -relation is true.

Inst(Θ,ΓA) ⇐⇒ DG(Θ) ∧ ∀i < n, |Di| = l∧
∧∀i, j < n, a, b < l,∃s < |ΓA|, EÄ(⟨i, a⟩, ⟨j, b⟩)↔ Γ2

A(s, a, b)∧
∧∀i < n, a < l, ∃s < |ΓA|, Di(a)↔ Γ1

A(s, a).
(56)

5.2 Universal algebra axiom schemes

In this subsection we will encode absorbing and central subuniverses and polynomially
complete algebras in V 1, and formulate three universal algebra axioms reflecting the "only
if" implications of Theorems 9, 10 and 11 (for the soundness we do not need the "if" impli-
cation). For this subsection we will consider CSP instances alongside the corresponding
algebras and suppose that any algebra is finite and has a special WNU term.
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5.2.1 Binary absorption axiom scheme

Consider any algebra A = (A,Ω) and its subalgebra B = (B,Ω), where Ω is m-ary basic
operation. Suppose that the corresponding relational structure to A is A = (A,ΓA), where
ΓA is at most binary part of a relational clone. Due to Galois correspondence, Clone(Ω) =
Pol(ΓA). Thus, for any binary term operation T over A the condition T ∈ Clone(Ω) can
be encoded as:

T ∈ Clone(Ω) ⇐⇒ Pol2(T,A,ΓA). (57)

For any three sets A,B, T the following Σ1,b
0 -definable relation indicates that the subset

B absorbs A with binary operation T :

BAsubS(B,A, T ) ⇐⇒ subS(B,A) ∧ ∀a ∈ A, ∀b ∈ B, ∃c1, c2 ∈ B,
T (a, b) = c1 ∧ T (b, a) = c2.

(58)

We will formalize the "only if" implication of Theorem 9 in the theory V 1 as Binary ab-
sorption axioms, BA-axioms. For any algebra A = (A,Ω) corresponding to the constraint
language ΓA of a CSP instance, it is enough to consider only finitely many axioms since
there are finitely many subalgebras D of A and finitely many strong subsets B of D).

Definition 18 (BAA-axioms). For any constraint language ΓA over set A of size l, fixed
algebra A = (A,Ω) with Ω being an m-ary special WNU operation, and finitely many
subuniverses D of A and binary absorbing subuniverses B of D the binary absorption
axiom scheme is denoted by BAA-axioms and consists of the finitely many formulas of the
following form

BAA,B,D =def ∀X = (VX , EX ),∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
PsubS(B,D) ∧ SwNUm(Ω, D) ∧ SwNUm(Ω, B)∧
∧∃T < (3l)23

, Pol2(T,D,ΓA) ∧BAsubS(B,D, T )∧
∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧

∃i < n,Di = D∧
HOM¨ (X , Ä)

)︁
→ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., B, ..., Dn−1)).

(59)

Variables here are an input digraph X with VX = n and a target digraph with domains
Ä, Θ stands for (X , Ä). The second line of the formula ensures that B is a proper subset
of D and both B and D are closed under Ω (relation SwNUm), i.e. both are subuniverses.
The third line claims that there exists a binary operation T defined on the subuniverse
D and compatible with all relations from ΓA such that B absorbs D with T . The fourth
line says that Θ is a CSP instance over constraint language ΓA, and this instance is cycle-
consistent and irreducible. Finally, the rest of the formula says that if D coincides with
a domain Di for some variable i, all the above-mentioned conditions hold and there is a
solution to the instance Θ, then there is a solution to the instance Θ with Di restricted to
B.

In strict form (with all string quantifiers occurring in front) and after regrouping them
in such a way that all universal quantifiers will precede existential ones, we will eventually
get the universal closure of Σ1,b

2 -formula.

5.2.2 Central subuniverse axiom scheme

We will formalize the "only if" implication of Theorem 10 not for a center, but for a central
subuniverse. Recall that a central subuniverse has all the good properties of a center, and
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we will use it in the algorithm instead of the latter. To define a central subuniverse C of
an algebra A = (A,Ω) we need to encode a set Sg for the subset X = {{a} ×C,C × {a}}
of A2 for any a ∈ A. Recall that Sg(X) can be constructed by the closure operator

E(X) = X ∪ {Ω(a1, ..., am) : a1, ..., am ∈ X}
∀t ≥ 0, E0(X) = X,Et+1(X) = E(Et(X)).

(60)

Since A is finite of size l and |X| = 2|C|, we do not need more than (l2−2|C|) applications
of the closure operator E since at every application we either add to the set at least one
element or after some t, Et(X) = Et+r(X) for any r. Not to depend on C, let us choose
the value l2. Thus, for any set X ≤ ⟨l, l⟩, we will iteratively define the following set El2

X

up to l2
∀b, c < l, E0

X(b, c) ⇐⇒ X(b, c)∧
∧∀0 < t < l2, ∀b, c < l, Et

X(b, c) ⇐⇒ Et−1
X (b, c)∨

∨∃b1, ..., bm, c1, ..., cm ∈ A,Et−1
X (b1, c1) ∧ ... ∧ Et−1

X (bm, cm)∧
∧Ω(b1, ..., bm) = b ∧ Ω(c1, ..., cm) = c.

(61)

The existence of this set follows from Σ1,b
1 -induction. A central subuniverse must be

an absorbing subuniverse, namely a ternary absorbing subuniverse [20]. For any three sets
A,C, S the following Π1,b

1 -definable relation expresses that the subset C of A is central
under ternary term operation S.

CRsubS(C,A, S) ⇐⇒ subS(C,A) ∧ ∀c1, c2 ∈ C,∀a ∈ A,∃c′
1, c

′
2, c

′
3 ∈ C,

S(c1, c2, a) = c′
1 ∧ S(c1, a, c2) = c′

2 ∧ S(a, c1, c2) = c′
3∧

∧∀a ∈ A\C,∀X < ⟨l, l⟩, ((X(a, c) ∧X(c, a)↔ c ∈ C)→ ¬El2
X(a, a)).

(62)

Definition 19 (CRA-axioms). For any constraint language ΓA over set A of size l, fixed
algebra A = (A,Ω), with Ω being an m-ary special WNU operation, and finitely many
subuniverses D of A and central subuniverses C of D we denote the central subuniverse
axiom scheme by CRA-axioms. The scheme embraces the finitely many formulas of the
following form

CRA,D,C =def ∀X = (VX , EX ), ∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
PsubS(C,D) ∧ SwNUm(Ω, D) ∧ SwNUm(Ω, C)∧
∃S < (4l)24

, Pol3(S,D,ΓA) ∧ CRsubS(C,D, S)∧
∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧

∃i < n,Di = D∧
HOM¨ (X , Ä)

)︁
→ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., C, ...,Dn−1)).

(63)

The formula is analogous to BAA-axioms, it is again the universal closure of Σ1,b
2 -

formula and the only line that differs is the third one: it claims that there exists a ternary
term operation S defined on subuniverse D and compatible with all relations from ΓA
such that C is a central subuniverse under S.

5.2.3 Polynomially complete axiom scheme

Theorem 6 claims that a finite algebra is polynomially complete if and only if it has the
ternary discriminator as a polynomial operation. Consider an algebra A = (A,Ω). The
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clone of all polynomials over A, Polynom(A) is defined as the clone generated by Ω and
all constants on A, i.e. nullary operations:

Polynom(A) = Clone(Ω, a1, ..., a|A|). (64)

Constants as nullary operations with constant values, composed with 0-many n-ary oper-
ations are n-ary operations with constant values. Thus, to be preserved by all constants
operations, any unary relation has to contain the whole set A, and any binary relation has
to contain the diagonal relation ∆A. We can impose these conditions on the set ΓA. For
the algebra A denote by Γdiag

A = (Γ1,diag
A ,Γ2,diag

A ) the pair of sets such that

Γ1,diag
A (j, a) ⇐⇒ Γ1

A(j, a) ∧ (∀b ∈ A,Γ1
A(j, b))

Γ2,diag
A (i, a, b) ⇐⇒ Γ2

A(i, a, b) ∧ (∀c ∈ A,Γ2
A(j, c, c)).

(65)

An n-ary operation P on algebra A is a polynomial operation if it is a polymorphism for
relations from Γdiag

A , i.e.

P ∈ Polynom(A) ⇐⇒ Poln(P,A,Γdiag
A ). (66)

For any two sets A and P the following Σ1,b
0 -definable relation claims that P is a ternary

discriminator on A:
PCD(A,P ) ⇐⇒ ∀a, b, c ∈ A,

(a = b ∧ P (a, b, c) = c) ∨ (a ̸= b ∧ P (a, b, c) = a).
(67)

Before the formalization of the "only if" implication of Theorem 11 as the polynomially
complete axiom scheme, we need to encode one more notion. For any congruence σ on
algebra A = (A,Ω), for factor algebra A/σ we will define the quotient set of relation ΓA/σ
as follows:

Γ1
A/σ(j, a) ⇐⇒ ∀a/σ ∈ A, Repm(a, a/σ,A/σ,A,Ω, σ) ∧ Γ1

A(j, a/σ)
Γ2

A/σ(i, a, b) ⇐⇒ ∀a/σ, b/σ ∈ A, Γ2
A(i, a/σ, b/σ)∧

∧Repm(a, a/σ,A/σ,A,Ω, σ) ∧Repm(b, b/σ,A/σ,A,Ω, σ).
(68)

The definition follows from log-space reduction from CSP(A/σ) to CSP(A). Note, that
for some i, j, Γ1

A,j/σ and Γ2
A,i/σ are empty sets, as well as Γ1,diag

A,j and Γ2,diag
A,i .

Definition 20 (PCA-axioms). For any constraint language ΓA over set A of size l, fixed
algebra A = (A,Ω) with Ω being an m-ary special WNU operation, and finitely many
subuniversesD of A and congruence blocks E of D the polynomially complete axiom scheme
is denoted by PCA-axioms and consists of the finitely many formulas of the following form

PCA,D,E =def ∀X = (VX , EX ),∀Ä = (VÄ, EÄ, D0, ..., Dn−1),(︁
[∀j < n,∀B < l, ∀T < (3l)23

, Pol2(T,Dj ,ΓA)→ ¬BAsubS(B,Dj , T )∧
∧∀j < n,∀C < l,∀S < (4l)24

, Pol3(S,Dj ,ΓA)→ ¬CRsubS(C,Dj , S)]
∧∃σ < ⟨l, l⟩,∃D/σ < l,∃Ω/σ < (ml)2m+1

, FAm(D/σ,Ω/σ,D,Ω, σ)∧
∧∃P < (4l)24

, Pol3(P,D/σ,Γdiag
D /σ) ∧ PCD(D/σ, P )∧

SwNUm(Ω, D) ∧ PsubS(E,D) ∧ (∀a ∈ E,∀b ∈ D,σ(a, b)↔ b ∈ E)∧
∧Inst(Θ,ΓA) ∧ CCInst(X , Ä) ∧ IRDInst(X , Ä)∧

∃i < n,Di = D∧
HOM¨ (X , Ä)

)︁
→ HOM¨ (X , Ä = (VÄ, EÄ, D0, ..., E, ..., Dn−1)).

(69)
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In this ∀Σ1,b
2 -formula, the first and the second lines in square brackets say that for any

domain Dj of instance Θ there are no binary absorbing or central subuniverses. The fourth
and fifth lines claim that there exists a congruence σ on D and the corresponding factor
algebra D/σ = (D/σ,Ω/σ) such that this factor algebra is polynomially complete. Note
that we define a discriminator P on factor set D/σ, and require that P is a polymorphism
for all relations from the quotient set of relation Γdiag

D /σ. The sixth line says that D is
closed under Ω, E is a proper subset of D and E is a congruence class of σ. Finally, the
rest of the formula says that if D coincides with a domain Di for some variable i, all the
above-mentioned conditions hold and there is a solution to the instance Θ, then there is
a solution to the instance Θ with Di restricted to the congruence class E.

5.3 A new theory of bounded arithmetic

For any relational structure A let us define a new theory of bounded arithmetic extending
the theory V 1, as follows.

Definition 21 (Theory V 1
A).

V 1
A =def V

1 + {BAA-axioms, CRA-axioms, PCA-axioms}.

Each of the universal algebra axiom schemes BAA-axioms, CRA-axioms, and PCA-axioms
consists of a finitely many ∀Σ1,b

2 -formulas for the fixed finite algebra A = (A,Ω) with a
special WNU operation Ω corresponding to the relational structure A = (A,ΓA).

We are going to show that for any structure A which leads to p-time solvable CSP, the
theory V 1

A proves the soundness of Zhuk’s algorithm.

5.4 Consistency reductions

Consistency reductions of Zhuk’s algorithm precede all other reductions and the lin-
ear case and include cycle-consistency reduction (function CheckCycleConsistency), ir-
reducibility reduction (function CheckIrreducibility) and weaker instance reduction (func-
tion CheckWeakerInstance), see [19]. Consider a CSP instance Θ = (X , Ä) with domain
set D = {D0, ..., Dn−1}. During consistency reductions the algorithm works with some
modifications of an input digraph X and a target digraph with domains Ä. At the end
of every procedure, the output is either "No solution" (some domain is empty after reduc-
tion), or "OK" (the algorithm cannot reduce any domain since the instance satisfies the
property we are checking), or the reduction (i,D′

i) of the first domain in a line that we
can reduce.

At the beginning of every procedure, for simplicity we will refer to every input instance
as the initial one, Θ = (X , Ä). It makes sense: after every reduction (i,D′

i) we start the
algorithm all from the beginning with the same input digraph (the same set of variables
and the same set of constraints) but with a smaller domain set D′ = {D0, ..., D

′
i, ..., Dn−1}:

we remove some vertices from Ä, which induces removing some edges. If the algorithm
moves to another procedure, it means that the previous one cannot reduce any domain -
so technically, we proceed with the same instance from the beginning of the current step
of recursion.

5.4.1 Cycle-consistency

In this section we will formalize the modification of the function CheckCycleConsistency
suggested by Zhuk in his latter paper [20]. In short, the algorithm first intersects all
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constraints and then uses constraint propagation to ensure a type of consistency called
(2, 3)-consistency. In words, (2, 3)-consistency means that for any variables i, j, k every
edge (i, j) extends to a triangle by edges (i, k) and (k, j). These two properties taken
together provide cycle-consistency. We explain the procedure in detail alongside the for-
malization.

Consider a CSP instance Θ = (X , Ä). First, for any two variables i, j the algorithm
defines a full relation Ri,j on domains Di × Dj . We define a new target digraph with
domains R̈ = (VR̈, ER̈, D0, ..., Dn−1), where VR̈ = VÄ, but while

EÄ(u, v) −→ ∃i, j < n ∃a, b < l u = ⟨i, a⟩ ∧ v = ⟨j, b⟩∧
Di(a) ∧Dj(b),

(70)

for ER̈ we have

ER̈(u, v) ⇐⇒ ∃i, j < n ∃a, b < l u = ⟨i, a⟩ ∧ v = ⟨j, b⟩∧
Di(a) ∧Dj(b).

(71)

That is, for all i, j ∈ {0, ..., n − 1}, Eij

R̈ is the full binary relation on Di × Dj (even for
those i, j, for which ¬EX (i, j) and ¬EX (j, i)).

Then for all i, j ∈ {0, ..., n − 1} the algorithm intersects each Eij

R̈ with projections of
all constraints onto the variables i, j. In our case, for i, j we have only constraints Di, Dj ,
Eij

Ä , and Eji

Ä , i.e. we intersect Eij

R̈ only with Eij

Ä and Eji

Ä . Let us denote new relations by
Eij

R̈0
:

Eij

R̈0
(a, b) ⇐⇒ (a ∈ Di ∧ b ∈ Dj)∧

∧(EX (i, j)→ Eij

Ä(a, b)) ∧ (EX (j, i)→ Eji

Ä(b, a)).
(72)

Note that if there are no constraints EX (i, j) and EX (j, i), then at this point both
Eij

R̈0
and Eji

R̈0
are still Di ×Dj , Dj ×Di. Then denote by Pr1(i, a) the intersection of the

projections of all constraints Eij

R̈0
on variable i:

Pr1(i, a) ⇐⇒ a ∈ Di ∧ ∀j < n, EX (i, j)→ ∃b ∈ Dj , E
ij

R̈0
(a, b)∧

∀k < n, EX (k, i)→ ∃c ∈ Dk, E
ki
R̈0

(c, a).
(73)

Let us define a new digraph R̈1 with domains by setting

VR̈1
(i, a) ⇐⇒ Pr1(i, a), (74)

and
Eij

R̈1
(a, b) ⇐⇒ Pr1(i, a) ∧ Pr1(j, b) ∧ Eij

R̈0
(a, b). (75)

Then the algorithm produces iterative propagation of constraints until it cannot change
any further relation. For every step of propagation t > 1, for all i, j ∈ {0, ..., n − 1} we
define a new set Rt as follows:

R1(i, j, a, b) ⇐⇒ Eij

R̈1
(a, b), (76)

and for t > 1

Rt(i, j, a, b) ⇐⇒ Rt−1(i, j, a, b)∧
∀k < n∃c < l Pr1(k, c) ∧ (Rt−1(i, k, a, c) ∧Rt−1(k, j, c, b)).

(77)
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The existence of this set is ensured by Σ1,b
1 -induction. For every step of propagation

t > 1, Rt(i, j, a, b) corresponds to the relation Eij

R̈t
and thus induces the next digraph with

domains R̈t. The process will eventually stop since on every step t > 1 we remove some
edges from R̈t−1, and the number of edges in R̈1 is bounded by some polynomial of n and
l, p(n, l). Let us prove it.

Denote the number of edges in R̈1 by q = #ER̈1
, i.e. the number of elements in

R1(i, j, a, b) is q. For every t ≤ (q+1) due to definition ∀i, j < n, ∀a, b < k, Rt(i, j, a, b)→
Rt−1(i, j, a, b). Suppose that for some t = q′ < q + 1 we have

∀i, j < n,∀a, b < l, Rq′(i, j, a, b) ⇐⇒ Rq′−1(i, j, a, b).

Then it means that the part

∀k < n∃c < l, Pr1(k, c) ∧ (Rt−1(i, k, a, c) ∧Rt−1(k, j, c, b))

is always true when t = q′. By induction on s we can prove that in this case

∀i, j < n,∀a, b < l, Rq′+s(i, j, a, b) ⇐⇒ Rq′−1(i, j, a, b)

since for s = 0 it is a suggestion, and if it is true for s = f , then we can rewrite the
definition of Rq′+f+1 using equivalent sets

Rq′+f+1(i, j, a, b) ⇐⇒ Rq′−1(i, j, a, b)∧
∀k < n∃c < l, Pr1(k, c) ∧ (Rq′−1(i, k, a, c) ∧Rq′−1(k, j, c, b)).

(78)

Now suppose that for every 1 < t ≤ (q + 1), ¬(Rt−1(i, j, a, b) → Rt(i, j, a, b)), i.e. for
every t there exist i, j < n, a, b < l such that Rt−1(i, j, a, b) ∧ ¬Rt(i, j, a, b), i.e. #Rt <
#Rt−1. Then by induction on t we can prove that #Rt ≤ q − (t− 1), therefore #Rq+1 ≤ 0
(the "worst" case - we removed all edges from R̈1). In both cases we proved that for every
t > q, Rt+1(i, j, a, b) ⇐⇒ Rt(i, j, a, b).

After the end of propagation, we reduce domains for the second time.

Prcc(i, a) ⇐⇒ Pr1(i, a) ∧ ∀j < n,EX (i, j)→ ∃b, Pr1(j, b) ∧ Eij

R̈q+1
(a, b)

∧∀k < n, EX (k, i)→ ∃c, Pr1(k, c) ∧ Eki
R̈q+1

(c, a).
(79)

We denote the new (cycle-consistent) target digraph with domains by Äcc and set

VÄcc
(i, a) ⇐⇒ Prcc(i, a), (80)

and
Eij

Äcc
(a, b) ⇐⇒ (Prcc(i, a) ∧ Prcc(j, b)) ∧ Eij

R̈q+1
(a, b). (81)

Remark 2. In Zhuk’s algorithm, the original function CheckCycleConsistency in [19] re-
duces one domain Di at a time (as if in (79) we fix some i), outputs the result (xi, D

′
i) and

starts all from the beginning. The modified function CheckCC in [20] returns all reduced
domains at once. Both do not return the reduced relations Eij

Ä : the algorithm applies
the function to the initial instance again and again until it cannot produce any further
reduction. Nonetheless, it does not affect the final result (we cannot produce two different
cycle-consistent reductions), so we omit these technical intermediate steps here.

Now we need to prove the following two statements:

1. The instance Θcc = (X , Äcc) is a cycle-consistent instance (according to definition).
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2. If the initial instance Θ = (X , Ä) has a solution, then Θcc has a solution.

Lemma 5. V 1 proves that if none of the domains VÄcc
(i), i < n is empty, then the instance

Θcc = (X , Äcc) is cycle-consistent.

Proof. Due to definitions (79)-(81), the instance Θcc is 1-consistent. For any i < n, any
a ∈ VÄcc

(i) consider any cycle Ct that can be homomorphically mapped into X with
H(0) = i and define the set H ′ < ⟨t, ⟨t, l⟩⟩ such that H ′(0) = ⟨i, a⟩ and for all j < t, k <
n,H(j) = k → H ′(j) = ⟨k, b⟩ for some b ∈ VÄcc

(k) (it exists since none of the domains is
empty). We need to prove that there is bk for each k < n such that H ′ is a homomorphism
from Ct to Ä. For this, it is enough to note that by the construction (78), the formula

∃b1, b2, ..., bt−1 < l, Ẽ
ik1
Äcc

(a, b1) ∧ Ẽk1k2
Äcc

(b1, b2) ∧ ... ∧ Ẽkt−1i

Äcc
(bt−1, a) (82)

where Ẽkiki+1
Äcc

(bi, bi+1) is either Ekiki+1
Äcc

(bi, bi+1) or Eki+1ki

Äcc
(bi+1, bi) depending on the cycle

Ct, is always true since for any a ∈ VÄcc
(i):

Eii
Äcc

(a, a)→ ∃bt−1 < l, E
ikt−1
Äcc

(a, bt−1) ∧ Ekt−1i

Äcc
(bt−1, a),

...

Eik3
Äcc

(a, b3)→ ∃b2 < l, Eik2
Äcc

(a, b2) ∧ Ek2k3
Äcc

(b2, b3),

Eik2
Äcc

(a, b2)→ ∃b1 < l, Eik1
Äcc

(a, b1) ∧ Ek1k2
Äcc

(b1, b2).

(83)

Set H ′(i) = ⟨ki, bi⟩ for all 0 < i < t. This completes the proof.

Lemma 6. V 1 proves that instance Θ = (X , Ä) has a solution if and only if Θcc = (X , Äcc)
has a solution.

Proof. Suppose that there is a homomorphism H from X to Ä and it sends edge EX (i, j)
to Eij

Ä(a, b) for a ∈ Di, b ∈ Dj . Due to the definition of a homomorphism for both a and
b, Eij

Ä must satisfy (72)-(75) and we do not lose any solution after the intersection of all
constraints. That is, instead of the set {X → Ä} we can consider set {X → R̈1}.

Consider a formula ϕ(t) which says that if H is a homomorphism from X to R′
1, then

for every step t of propagation, for all i, j, k ∈ {0, 1, ..., n− 1}, all a, b, c < l

ϕ(t) = HOM¨ (X ,R′
1, H) ∧H(i) = ⟨i, a⟩ ∧H(j) = ⟨j, b⟩ ∧H(k) = ⟨k, c⟩ −→
(Eij

R̈t
(a, b) ∧ Eik

R̈t
(a, c) ∧ Ekj

R̈t
(c, b)).

(84)

For t = 1 this is true. For every constraint EX (i, j) the implication Eij

R̈1
(a, b) follows

from the definition of a homomorphism. For any i, j such that ¬EX (i, j) the implication
Eij

R̈1
(a, b) follows from the definition of Eij

R̈0
and (73)-(75): we do not remove edges from

R̈1 between domains not connected in a constraint without removing vertices. Thus, if
there remain some vertices, there will remain all edges between these vertices as well.

If ϕ(t) is true for t = s, then it is true for t = (s+ 1) due to construction (77). Hence,
{X → Ä} ⊆ {X → Äcc}. The opposite inclusion is trivial.

5.4.2 Irreducibility

Consider a cycle-consistent instance Θ = (X , Ä) with a domain set D = {D0, ..., Dn−1}.
The algorithm chooses a variable i and some maximal congruence σi on Di and denotes by
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I = {i} the set of the indices. Then it considers all other variables k such that k /∈ I and
for some j ∈ I there is a projection of some constraint C onto j, k. Since we consider at
most binary relations, and the instance is cycle-consistent, it follows that the projection of
any constraint EX (j, k) (or EX (k, j)) onto j, k is either the constraint relation Ejk

Ä (or Ekj

Ä )
or domains Dj , Dk. On domain Dk of such variable k, the algorithm generates relation σk

as follows:

EX (j, k) : σk(a, b) ⇐⇒ ∃a′, b′ ∈ Dj , σj(a′, b′) ∧ Ejk

Ä (a, a′) ∧ Ejk

Ä (b, b′). (85)

That is, the algorithm defines a partition on Dk according to the partition on Dj . Since
this new relation is constructed from relations compatible with Ω by pp-definition, it is
also compatible with Ω, and therefore is a congruence. If this congruence is proper, then
we have the same number of equivalence classes on Dk as on Dj , and elements from one
class in Dk are connected with elements only from one class in Dj . Otherwise, σj is not
maximal since we can define a new congruence on Dj in an analogous way as in (85).
The algorithm collects all such Dk with proper congruences σk into the list of indices I,
and then considers the projection ΘprX′ of the initial instance onto X ′ = {k|k ∈ I}. This
projection can be split into instances on smaller domains (corresponding to connected
classes in different domains), and these instances can be solved by recursion.
Remark 3. If there is no domain Dk such that σi generates on it a proper congruence,
the algorithm moves first to another maximal congruence σ′

i on Di and then to i + 1 ∈
{0, 1, ..., n− 1}.

For every k ∈ I we thus can check if the solution set to the projection ΘprX′ is subdirect.
If not, and for some k ∈ I there are b1, ..., bs such that there is no solution to ΘprX′ , then
the algorithm return D′

k = Dk\{b1, ..., bs} and runs from the beginning. If for all b ∈ Dk

there is no solution to ΘprX′ , then the algorithm returns "No solution". If the solution set
to ΘprX′ is subdirect, then the algorithm moves to another maximal congruence on Di,
and then to i + 1 ∈ {0, 1, ..., n − 1}. If the algorithm cannot reduce any domain Di, and
none of the domains is empty, the algorithm returns "OK".

For the formalization of the function CheckIrreducibility, for every domain Di let us
denote by σi(q, a, b) the list of all maximal congruences on Di (we know them in advance).
The number of all congruences on Di is some constant qi ≤ 2l2 . Then for every variable
i ∈ X, and every maximal congruence σq

i (a, b) on Di we iteratively define the following set
of elements It,i,q(j, a, b), where t is the iteration step, i is fixed domain, q is fixed maximal
congruence, j is the considered domain and a, b are elements in one congruence class:

∀a, b < l, I0,i,q(i, a, b) ⇐⇒ σq
i (a, b)∧

∧∀0 < t < n, k < n, a, b < l, It,i,q(k, a, b) ⇐⇒ It−1,i,q(k, a, b)∨
∨∃j < n, a′, b′ < l, It−1,i,q(j, a′, b′)∧

∧(EX (j, k) ∧ Ejk

Ä (a′, a) ∧ Ejk

Ä (b′, b)) ∨ (EX (k, j) ∧ Ekj

Ä (a, a′) ∧ Ekj

Ä (b, b′))∧
∧¬

[︁
∃c, d ∈ Dj ,∃e ∈ Dk, ¬It−1,i,q(j, c, d)∧

∧(EX (j, k) ∧ Ejk

Ä (c, e) ∧ Ejk

Ä (d, e)) ∨ (EX (k, j) ∧ Ekj

Ä (e, c) ∧ Ekj

Ä (e, d))
]︁
.

(86)

At step t = 0 the set I0,i,q contains only index i and (a, b) such that a, b ∈ Di are in
the same congruence class of σq

i . At each further step t > 0 we add to It,i,q all elements
from It−1,i,q and indices of the domains connected to elements from It−1,i,q such that σq

i

generates proper partitions on those domains. Lines 3-5 consider a connection between j
and k and define a partition on It,i,q(k), and lines 6-8 in square brackets checks that this
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partition is proper, i.e. no elements c, d ∈ Dj from different congruence classes connected
in Dk. Since we cannot add more than n elements to I, In,i,q contains all wanted elements.
The existence of this set is provided by induction on t on Σ1,b

1 -formula, and the implication
t→ (t+ 1) follows from comprehension axiom scheme Σ1,b

0 -CA.
Suppose that the algorithm returns "OK". We will denote the new target digraph with

domains after irreducibility reduction by Äir. Due to the algorithm, for each subinstance
Θ′

ir of Θir, considered by the function CheckIrreducibility, the solution set to Θ′
ir is sub-

direct. It is obvious that Θ′
ir is not fragmented and not linked. We can formalize the

properties of the instance Θir = (X , Äir) as follows: for every i ∈ VX and every maximal
congruence σq

i

∀VX ′ < n,∀EX ′ < 4n2, X ′ = (VX ′ , EX ′),
((∀j < n,∃a, b < l, VX ′(j)↔ In,i,q(j, a, b)) ∧ (∀s, s′ < n, EX ′(s, s′)→ s, s′ ∈ VX ′)∧

∧(∀s, s′ ∈ VX ′ , EX ′(s, s′)↔ EX (s, s′)))→ subDSSInst(X ′, Äir).
(87)

We need to prove two statements:

1. The instance Θir = (X , Äir) is irreducible due to definition.

2. The initial instance Θ = (X , Ä) has a solution only if Θir has a solution.

We start with several technical lemmas.

Lemma 7. V 1 proves that for any cycle-consistent instance Θ = (X , Ä), for any i ∈ X,
relation Linked(a, b, i, i,Θ) is a congruence on Di.

Proof. Recall the definition of Linked(a, b, i, i,Θ):

Linked(a, b, i, i,Θ) ⇐⇒ ∃t < nl, VPt = t, EPt ≤ t2,
PATH(VPt , EPt) ∧ ∃H ≤ ⟨t, n⟩, HOM(Pt,X , H) ∧ (H(0, i) ∧H(t, i))∧

∧∃H ′ ≤ ⟨t, ⟨t, l⟩⟩, HOM¨ (Pt, Ä, H ′)∧
∧(∀k < n, p < t, (H(p, k)→ ∃c ∈ Dk, H

′(p) = ⟨k, c⟩))
∧H ′(0) = ⟨i, a⟩ ∧H ′(t) = ⟨i, b⟩.

(88)

First of all, for any a ∈ Di we have Linked(a, a, i, i,Θ). Indeed, since the instance is
cycle-consistent, it follows that for any cycle Ct that can be mapped to X with H(0, i), we
will have a homomorphism H ′ from Ct to Ä such that

∀j < n, k < t (H(k, j)→ ∃b ∈ Dj , H
′(i) = ⟨j, b⟩) ∧H ′(0) = ⟨i, a⟩.

Instead of cycle Ct consider a path Pt such that for all i < (t− 1)

EPt(i, i+ 1)↔ ECt(i, i+ 1) ∧ EPt(i+ 1, i)↔ ECt(i+ 1, i),

and for i = (t− 1)

EPt(i, i+ 1)↔ ECt(i, 0) ∧ EPt(i+ 1, i)↔ ECt(0, i),

and set H(t, i), H ′(t) = ⟨i, a⟩. Thus, Linked(a, b, i, i,Θ) is indeed a relation on the whole
Dx, and a reflexive one. To prove that the relation is symmetric, for any a, b such that

∃Pt < ⟨nl, (nl)2⟩, Linked(a, b, i, i,Θ,Pt),
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consider the inverse path P−1
t and define a new homomorphisms M,M such that for all

j ≤ t, k < n, c < l

M(j, k)↔ H(t− j, k) ∧M ′(j) = ⟨k, c⟩ ↔ H ′(t− j) = ⟨k, c⟩.

Finally, if for a, b, c ∈ Di, there are

∃Pt < ⟨nl, (nl)2⟩, Linked(a, b, i, i,Θ,Pt),

∃Pm < ⟨nl, (nl)2⟩, Linked(b, c, i, i,Θ,Pm),

we can consider the glued path Pt ◦ Pm, and use on the first and second parts of the path
homomorphisms corresponding to Pt and Pm respectively. Thus, the relation is transitive.

It remains to show that the relation is compatible with operation Ω, i.e. Polm,2(Ω, Di,
Linked[i,i,Θ]). But it follows from the fact that the set of all pairs (a, b) ∈ Linked[i,i,Θ] can
be defined by a pp-positive formula (see [19]), and therefore is in the list Γ2

A.

Note that since for every variable i ∈ X the algorithm checks every maximal congruence
on Di, it follows that Linked[i,i,Θ] is either contained in some maximal congruence or is a
maximal congruence itself. Also, for any cycle-consistent instance Θ = (X , Ä), for any its
subinstance Θ′ = (X ′, Ä) and any Di, i ∈ X ′

Linked(a, b, i, i,Θ′)→ Linked(a, b, i, i,Θ),

i.e. the congruence relation Linked[i,i,Θ] of the instance Θ contains the congruence relation
Linked[i,i,Θ′] of any its subinstance Θ′. By adding any new variable j ∈ X\X ′ to X ′ with
all induced edges from X , we cannot make relation Linked[i,i,Θ′] smaller since when it
comes down to being linked we consider the existence of a path, and for any a, b ∈ Di in
Linked[i,i,Θ′] the path already exists. But we can add some new paths, making Linked[i,i,Θ′]
larger.

Lemma 8. V 1 proves that if an instance Θ = (X , Ä) is not fragmented, then for any
i, j ∈ VX there exist t < n and a path Pt such that

∃H ≤ ⟨t, n⟩, HOM(Pt,X , Z) ∧H(0) = i ∧H(t) = j.

Proof. Consider the formula θ(t)

θ(t) =def t < n, i ∈ V 1
X , j ∈ V 2

X ∧ V 1
X = V 2

X = n ∧ #V 2
X (n) = t∧

∧PsubS(V 1
X , VX ) ∧ PsubS(V 2

X , VX ) ∧ (∀k < n, V 1
X (k)↔ ¬V 1

X (k))∧
∧∃m ≤ t,∃Pm, VPm = m,EPm < m2, PATH(VPm , EPm)∧

∧∃H ≤ ⟨m,n⟩, HOM(Pm,X , H) ∧H(0, j) ∧H(m, i′) ∧ i′ ∈ V 1
X .

(89)

For t = 1, the formula is true since ¬FragmInst(X , Ä). If θ(t) is true for t = s, then it is
also true for t = (s + 1). Indeed, since the instance is not fragmented, it follows that for
V 2

X , #V 2
X (n) = (s+1) there are two elements i′ ∈ V 1

X and j′ ∈ V 2
X such that there is an edge

EX (i′, j′) or EX (j′, i′). Then consider two sets V 1
X ∪{j′} and V 2

X \{j′}. Since #V 2
X \{j′} = s,

there has to be a path Pm,m ≤ s, and H ≤ ⟨m,n⟩ with H(0) = j,H(m) = i′′ for some
i′′ ∈ V 1

X ∪{j′}. If i′′ = j′, we get a path of length m ≤ (s+ 1) from j to i′. If i′′ ̸= j′, then
there is a path of length m ≤ s from j to some element i′′ ∈ V 1

X . Finally, it also must be
true for t = n− 1.
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Lemma 9. V 1 proves that if a cycle-consistent instance Θ = (X ,A) is not fragmented
and not linked, then for all Di there exist a, b ∈ Di such that ¬Linked(a, b, i, i,Θ).

Proof. Since the instance Θ is not linked, by definition there exist i ∈ VX and a, b ∈ Di such
that ¬LinkedCon(a, b, i, i,Θ). Suppose that there exists Dj such that for any a′, b′ ∈ Dj

we have LinkedCon(a′, b′, j, j,Θ), i.e. there exist some path Pt and a homomorphism H ′

from Pt to Ä connecting a′ and b′. Since the instance is not fragmented, due to Lemma
8 it follows that there exists a path Ps from i to j. Consider the reverse path P−1

s and
define a cycle C2s as follows:

VC2s = 2m ∧ ∀k < m, EC2s(k, k + 1)↔ EPs(k, k + 1)∧
∧ ↔ EC2s(k + 1, k)↔ EPs(k + 1, k)∧

∧∀r < (s− 1), EC2s(s+ r, s+ r + 1)↔ EP−1
s

(r, r + 1)∧
∧EC2s(s+ r + 1, s+ r)↔ EP−1

s
(r + 1, r)∧

∧EC2s(2s− 1, 0)↔ EP−1
s

(s− 1, s) ∧ EC2m(0, 2s− 1)↔ EP−1
s

(s, s− 1).

(90)

That is, in C2s we glued together the start and the end of paths Ps and P−1
s respec-

tively, and vice versa. This cycle can obviously be mapped into X , and due to cycle-
consistency for a, b ∈ Di there exist homomorphisms H ′

a, H
′
b from C2s to Ä such that

H ′
a(0) = ⟨i, a⟩, H ′

b(0) = ⟨i, b⟩. Suppose that H ′
a(s) = ⟨j, a′⟩ and H ′

b(s) = ⟨j, b′⟩ and con-
sider a path Ps ◦ Pt ◦ P−1

s . Then use homomorphism H ′
a for Ps, H ′ for Pt and H ′

b for
P−1

s . Thus, we have a path and a new homomorphism connecting a and b in Di. That is
a contradiction.

Remark 4. Note that in proof of Lemma 9 we have to use cycle-consistency. We can
ensure a path from i to j in X due to the fact that the instance is not fragmented, but
without cycle-consistency (or linked property) we cannot ensure that this path has proper
evaluation in Ä.

Lemma 10. V 1 proves that the instance Θir = (X , Äir) is irreducible.

Proof. Suppose that there exists a subinstance Θ′ = (X ′, Äir) such that X ′ = (VX ′ , EX ′),
VX ′ < n,EX ′ < 4n2, VX ′ is a subset of VX , EX ′ is a subset of EX , and

EX ′(x1, x2)→ x1, x2 ∈ VX ′ ,

and this instance is not fragmented, and not linked, and its solution set is not subdirect. We
need to prove that any such subinstance must be included in some subinstance generated
by the algorithm (and therefore must have a subdirect solution set).

Due to Lemma 9, for any i ∈ VX ′ there exist a, b ∈ Di, (a, b) /∈ Linked[i,i,Θ′], thus any
such congruence is proper. Fix some i ∈ X ′, and consider a maximal congruence σq

i (a, b)
for some q < qi on Di that contains Linked[i,i,Θ′]. Consider subinstance Θ′′ = (X ′′, Ä),
defined as:

∀j < n,∃a, b < l, VX ′′(j)↔ In,i,q(j, a, b)∧
∧∀s, s′ < n, EX ′′(s, s′)→ s, s′ ∈ VX ′′∧
∧∀s, s′ ∈ VX ′′ , EX ′′(s, s′)↔ EX (s, s′).

(91)

We need to show two points:

1. For every j ∈ X ′ there exist a′, b′ ∈ Dj such that In,i,q(j, a′, b′) (i.e. X ′ is a subset
of X ′′).
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2. For every j ∈ X ′, for all a′, b′ ∈ Dj ,

In,i,q(j, a′, b′) −→ ∃a, b ∈ Di, In,i,q(i, a, b)∧
∧Linked(a, a′, i, j,Θ) ∧ Linked(b, b′, i, j,Θ),

and for all a, b ∈ Di, for all j ∈ X ′, a′, b′ ∈ Dj

In,i,q(i, a, b) ∧ Linked(a, a′, i, j,Θ) ∧ Linked(b, b′, i, j,Θ)→ In,i,q(j, a′, b′).

This means that in Θ′ the congruence σq
i (a, b) generates the same partition on each

domain as in Θ′′.

For the first claim, note that since the instance Θ′ is not fragmented, due to Lemma 8 it
follows that V 1 proves that for any j ∈ VX ′ there exist s < n and a path Ps connecting i and
j. We go by the induction on the length of that path. For s = 0 we have I0,i,g(i, a, b), for
s = 1 consider some k such that EX ′(i, k) (or EX ′(k, i)). Since the instance is 1-consistent,
there exist some c, d ∈ Di, c′, d′ ∈ Dk such that

EX ′(i, k) ∧ Eik
Ä (c, c′) ∧ Eik

Ä (d, d′),

and the only thing we have to check due to defining equation (86) is that there are no
c, d ∈ Di, e ∈ Dk such that ¬I0,i,g(i, c, d) and

EX ′(i, k) ∧ Eik
Ä (c, e) ∧ Eik

Ä (d, e).

It follows immediately from the fact that if such c, d, e exist, then Linked(c, d, i, i,Θ′) and
therefore I0,i,q(i, c, d) (the congruence σq

i (a, b) contains Linked[i,i,Θ′]). For the implication
s = t → s = (t + 1), suppose that for every k ∈ X ′ such that there exists a path
of length t connecting i and k, there exist j ∈ X ′, c, d ∈ Dj , c′, d′ ∈ Dk such that
It−1,i,g(j, c, d), and all other conditions of (86) hold. Note that for s = 0, 1 we established
Linked(c, c′, i, k,Θ′) ∧ Linked(d, d′, i, k,Θ′), so we can assume that this is true for s = t
as well. Then use the same reasoning.

The first implication of claim 2 follows from the above. For the second implication we
again use induction on the length of a path. For s = 0, 1 it follows from the definition of
In,i,q. For the implication s = t → s = (t + 1) suppose that for every k ∈ X ′ such that
there exists a path of length t connecting i and k, for any a, b ∈ Di and any a′, b′ ∈ Dk

such that In,i,q(i, a, b) ∧ Linked(a, a′, i, k,Θ) ∧ Linked(b, b′, i, k,Θ) we have In,i,q(k, a′, b′).
But since we can consider any path of length (t+ 1) as glued paths of length t and 1, the
implication for s = (t + 1) again follows straightaway from the definition of Ii,n,q. This
completes the proof.

Lemma 11. V 1 proves that Θ = (X , Ä) has a solution only if Θir = (X , Äir) has a
solution.

Proof. It is sufficient to show that if Θ has a solution, then Θ has a solution on domains
D0, ..., Dj−1, Dj\{b1, ..., bs}, Dj+1, ..., Dn−1 after irreducibility reduction of one domain
Dj . This is straightforward. Fix some i0 and suppose that the maximal congruence σq

i0
divides Di0 to t equivalence classes. To make a reduction we consider some subgraph X ′ of
digraph X containing vertex i0 and such that it is connected and contains only vertices for
which domains Di1 , ..., Dig congruence σi0 generates proper congruences. Since instance Θ
is cycle-consistent, therefore for any s, t projection of Est

Ä onto Ds, Dt Is subdirect. Thus,
we construct a subinstance ΘprX′ = (X ′, Ä) of instance Θ with the same target digraph
with domains (and the same domain set), but with another input digraph X ′.
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Suppose that there is a homomorphism from X to Ä. For every H ∈ {X → Ä} define
a new homomorphism H ↾X′ from X ′ to Ä as follows:

∀i ∈ {i0, i1, ..., ig}, H ↾X′ (i) = ⟨i, a⟩ ⇐⇒ H(i) = ⟨i, a⟩. (92)

That H ↾X′ is a homomorphism follows right from the definition of H. Therefore, {H ↾X′

} ⊆ {X ′ → Ä}. If for some j ∈ {i0, i1, ..., ig} and some b1, ..., bs there is no homomorphism
H ′ ∈ {X ′ → Ä} such that H ′(j) = ⟨j, b1⟩, ...,H ′(j) = ⟨j, bs⟩, then no homomorphism from
{X → Ä} sends j to ⟨j, b1⟩, ..., ⟨j, bs⟩.

5.4.3 Weaker instance

When the algorithm runs the function CheckWeakerInstance it makes a copy of Θ = (X , Ä)
and simultaneously replaces every constraint in the instance with all weaker constraints
without dummy variables. Then for every i ∈ {0, 1, ..., n−1} it checks if the obtained weaker
instance has a solution for xi = b, for every b ∈ Di (by recursively calling the algorithm on
a smaller domain). That is, the algorithm checks if the solution set to the weaker instance
is subdirect. Suppose that the algorithm considers some i, set D′

i = ∅. It fixes the value
xi = b and solves the weaker instance with domain set D0, ..., Di−1, {b}, Di+1, ..., Dn−1. If
there is a solution, then it adds b to D′

i and proceeds with another b′ ∈ Di. If there are
solutions for all b ∈ Di, the algorithm proceeds with i + 1. If for each b ∈ Di there is no
solution, the algorithm answers that the initial instance has no solution. If there are some
b1, ..., bk ∈ Di for which there is no solution to the weaker instance, the algorithm reduces
domain Di to D′

i = D\{b1, ..., bs}, returns (xi, D
′
i) and starts from the beginning.

Consider a cycle-consistent irreducible instance Θ = (X , Ä). Any constraint in Θ is
either a domain Di for a variable i, or a relation Eij

Ä for an edge EX (i, j). Since Θ is
cycle-consistent, projections pri(Eij

Ä) and prj(Eij

Ä) are equal to Di, Dj . The algorithm
never increases domains, so we weaken only binary constraints and replace each Eij

Ä by
two different types of weaker constraints:

1. Di, Dj - weaker constraints of less arity;

2. All binary constraints from the list ΓA containing Eij

Ä except the full relation on
Di ×Dj .

Consider the intersection of all the above weaker constraints. Note that for any i we
have the same domain Di. We can lose some edges (i, j) from EX (when the only binary
relation containing Eij

Ä is the full relation on Di ×Dj) and can add some edges to Ä. Let
us denote the obtained weaker instance by Θweak = (Xweak, Äweak).

Lemma 12. V 1 proves that a CSP instance Θ = (X , Ä) has a solution only if Θ has a
solution after the weaker instance reduction.

Proof. It is obvious that if instance Θ has a solution, then Θweak has a solution (we did
not remove any edge or vertex from Ä and probably removed some edges from X : just
take the same homomorphism). That is, {X → Ä} ⊆ {Xweak → Äweak}.

Suppose that for some i there are b1, ..., bs ∈ Di such that there is no solution to Θweak,
i.e. there is no homomorphism H in {Xweak → Äweak} such that H(i) = ⟨i, b1⟩, ...,H(i) =
⟨i, bs⟩. It is needed to show that if Θ has a solution, then Θ has a solution on domains
D0, ..., Di−1, Di\{b1, ..., bs}, Di+1, ..., Dn−1. But it is trivial.
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5.5 Linear case

In this section we will formalize and prove the soundness of the linear case of Zhuk’s
algorithm in the theory V 1 using Σ1,b

1 -induction.

5.5.1 Formalization of the linear case in V 1

For the linear case of Zhuk’s algorithm, we need to define in V 1 some additional notions,
namely finite abelian groups and matrices over finite fields.

To formalize the finite abelian group Zp = {0, 1, ..., p − 1} we define sum operation
+(mod p) as follows:

c = a+(mod p) b←→ c < p ∧ c ≡ (a+ b) (mod p). (93)

We define the identity element to be 0 and the inverse element for any a < p, denoted
−(mod p)a, to be p −̇ a. Furthermore, for any m ∈ N and any a ∈ Zp we can define ·(mod p)
as follows:

c = m ·(mod p) a←→ c < p ∧ c ≡ (ma) (mod p). (94)

For fields (when p is a prime number) we can also define the multiplicative inverse for any
a ̸= 0, a ∈ Zp, denoted by a−1:

c = a−1 ←→ c < p ∧ c ̸= 0 ∧ c ·(mod p) a = a ·(mod p) c = 1. (95)

It is clear that +(mod p),−(mod p), ·(mod p) and 0 can be defined in a weak subtheory of V 1

and satisfy all properties of a finite abelian group. A weak subtheory of V 1 can also define
the multiplicative inverse modulo a prime and hence, in particular, V 1 proves that Zp is
a field. In our case, primes pi are even fixed constants.

An m × n matrix A over Zp is encoded by a relation A(i, j, a), we write Aij = a for
the corresponding entry. We will denote by MXm×n,p(A) a relation that A is an m × n
matrix over Zp. The sum of two m× n matrices A and B can be defined by a set-valued
function

C = A+B ←→MXm×n,p(C) ∧ ∀i < m, j < n Cij = Aij +(mod p) Bij , (96)

and the scalar multiplication bA of a number b ∈ Zp and an m×n matrix A can be defined
as:

C = bA←→MXm×n,p(C) ∧ ∀i < m, j < n Cij = b ·(mod p) Aij . (97)

The definability of matrix addition and scalar multiplication in V 1 is obvious. Finally,
to define the matrix multiplication, we will use the fact that V 1 defines the summation
of long sums, i.e. if C is a function with domain {0, ..., n − 1}, then V 1 defines the sum∑︁

i<nC(i) and proves its basic properties.
Indeed, consider Σ1,b

1 -induction on t ≤ n, where t is the number of elements in formula

ϕ(i, j, t, A,B) =def ∃X < ⟨t, p⟩, X0 = Ai0 ·(mod p) B0j∧
∀0 < k < tXk = Xk−1 +(mod p) Aik ·(mod p) Bkj .

(98)

Here X encodes the sequence of t partial sums, and by Xk we denote X(k). For t = 1,
ϕ(i, j, t, A,B) is true (since ·(mod p) is definable in V 1), and ϕ(i, j, t+ 1, A,B) follows from
ϕ(i, j, t, A,B) since +(mod p) is also definable in V 1. This uses Σ1,b

1 induction.
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We can thus define the multiplication of an m× n matrix A and an n× s matrix B as
follows:

C = AB ←→MXm×s,p(C) ∧ ∀i < m, j < s

Cij = Ai0 ·(mod p) B0j +(mod p) ...+(mod p) Ai(n−1) ·(mod p) B(n−1)j .
(99)

We will further use notation +,−, · instead of +(mod p),−(mod p) and ·(mod p) since it does
not lead to confusion.

5.5.2 Soundness of the linear case in V 1

We will call an instance Θ = (X , Ä), produced by the algorithm before the linear case, the
initial instance. As the first modification of the instance, we need to define a factorized
instance ΘL: at this step, we change the target digraph Ä and do not change instance
digraph X . The algorithm factorizes each domain separately and due to the assumption for
every domain Di there is the minimal linear congruence σi such that Di/σi is isomorphic
to linear algebra. Denote by σ < nl2 the set representing all congruences σi, σ(i, a, b) ⇐⇒
σi(a, b). The factorized target digraph with domains ÄL can be represented as an (n+ 2)-
tuple (VÄL

, EÄL
, D0/σ0, ..., Dn−1/σn−1), where VÄL

< ⟨n, l⟩, VÄL
(i, a) ⇐⇒ D/σi(a) and

EÄL
such that

EÄL
(s, r) ⇐⇒ ∃i, j < n ∃a, b < l, s = ⟨i, a⟩ ∧ r = ⟨j, b⟩∧

Di/σi(a) ∧Dj/σj(b) ∧ (∃c, d < l, σ(i, a, c) ∧ σ(j, b, d) ∧ Eij

Ä(c, d)).
(100)

In words, there is an edge between elements a, b representing classes [a]/σi and [b]/σj in
ÄL any time Eij

Ä ∩ [a]/σi × [b]/σj ̸= ∅. In the factorized target digraph constructed in
such a way, we actually can lose some edges (for example, when we glue all edges between
elements in [a]/σi and [b]/σj in one edge), but we also can get new solutions (for example,
when we get new cycles). We thus increase the set of solutions by simplifying the structure
of the target digraph with domains.

Theorem 12. V 1 proves that an instance Θ = (X , Ä) has a solution only if ΘL = (X , ÄL)
has a solution.

Proof. Consider a CSP instance Θ = (X , Ä) with VX = n, VÄ < ⟨n, l⟩. Suppose that the
instance has a solution, i.e. there exists a homomorphism H from X to Ä. Construct the
factorized instance as mentioned above.

We first construct the canonical homomorphism Hc between the target digraph Ä and
the factorized digraph ÄL, and then show that there is a homomorphism from X to ÄL.
Define Hc as follows: for every u ∈ VÄ, and every v ∈ VÄL

Hc(u, v) ⇐⇒ ∃i < n, a, b < l, u = ⟨i, a⟩, v = ⟨i, b⟩ ∧ σ(i, b, a) ∧Di/σi(b).

That is, we send a vertex a to a vertex b in ÄL in the factorized domain Di/σi if and only if
b ∈ Di, b and a are in the same congruence class under σi, and b is a represent of the class
a/σi (the smallest element). This set exists due to Σ1,b

0 -comprehension axiom. Moreover,
it satisfies the relation of being a well-defined map between two sets VÄ and VÄL

. The
existence of b is ensured by the property of congruence relation σi (reflexivity), and the
uniqueness by our choice of representation of the factor set by the minimal element in the
class. It is left to show that

∀u1, u1, v1, v2 < ⟨n, l⟩(EÄ(u1, u2) ∧ Zc(u1, v1) ∧ Zc(u2, v2)→ EÄL
(v1, v2)),
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but this follows straightforwardly from the definition of Hc and EÄL
. Finally, to construct

a homomorphism from X to AL, consider set H ′ < ⟨n, ⟨n, l⟩⟩ such that

H ′(i) = v ⇐⇒ ∃u < ⟨n, l⟩(H(i) = u ∧Hc(u) = v.

It is easy to check that set H ′ satisfies the homomorphism relation between digraphs X
and ÄL. Thus, there is a solution to the factorized instance ΘL.

Suppose that there is a solution set to the instance Θ, the set of homomorphisms
from X to Ä, denoted by {X → Ä} = {H1, H2, ...,Hs}. We will call the set of all ho-
momorphisms, constructed from H1, ...,Hs by canonical homomorphisms Hc the solution
set to Θ factorized by congruences, denoted by {X → Ä}/Σ = {H ′

1, ...,H
′
s} (some of the

homomorphisms H ′
1, ...,H

′
s can be equivalent).

By the previous theorem, we established that ΘL has a solution only if Θ does. Now
to find solutions to ΘL we will use the translation of constraints into a system of linear
equations (we suppose that this translation is included in the algorithm’s transcription)
and run Gaussian Elimination. We thus need to show in V 1 that this process does not
reduce the solution set to ΘL. Let us recall that a matrix A is in the row echelon form if
it is either a zero matrix or its first non-zero entry of row i+ 1 must be on the right of the
first non-zero entry of row i, and these entries must be 1. Consider the system of linear
equations Ax̄ = b̄ for an m×n matrix A. Suppose that we have a sequence of m× (n+ 1)
matrices [A0|B0], [A1|B1], ..., [At|Bt], where [A0|B0] is the original augmented matrix of
the system of linear equations, [At|Bt] is a matrix in the row echelon form and every next
matrix is obtained from the previous one by one of the elementary row operations. Since
every elementary row operation can be simulated by left multiplication by an elementary
matrix, instead of defining elementary row operations, we define elementary matrices in
V 1.

We say that an m×m matrix E is elementary if E satisfies one of the following three
relations. The first of them corresponds to row-switching transformations

ELI
m×m,p(E) ⇐⇒ MXm×m,p(E) ∧ ∃i′ ̸= j′ < m∀i, j < m

(i ̸= i′ ∧ i ̸= j′ → Eii = 1) ∧ (i ̸= i′ ∧ j ̸= j′ ∧ i ̸= j → Eij = 0)
∧(Ei′i′ = 0 ∧ Ej′j′ = 0 ∧ Ei′j′ = 1 ∧ Ej′i′ = 1),

(101)

the second one corresponds to row-multiplying transformations

ELII
m×m,p(E) ⇐⇒ MXm×m,p(E) ∧ ∃a ̸= 0 ∈ Zp∃i′ < m

∀i, j < m(i ̸= i′ → Eii = 1) ∧ (i ̸= j → Eij = 0) ∧ Ei′i′ = a,
(102)

and the last one corresponds to row-addition transformations

ELIII
m×m,p(E) ⇐⇒ MXm×m,p(E) ∧ ∃a ̸= 0 ∈ Zp∃i′, j′ < m∀i, j < m

(Eii = 1 ∧ (i ̸= j ∧ i ̸= i′ ∧ j ̸= j′ → Eij = 0) ∧ Ei′j′ = a.
(103)

Let us denote these elementary matrices by T 1, T 2, T 3. If we consider matrix [A|B], then
matrices T 1[A|B], T 2[A|B] and T 3[A|B] are matrices produced from [A|B] by elementary
row operations. Since V 1 can define long sums it is easy to show that V 1 proves that each
of elementary row operations preserves the solution set to Ax̄ = b̄.

Lemma 13. V 1 proves that for every matrix [A|B] there is a row-echelon matrix [A′|B′]
having the same solution set.
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Proof. Use Σ1,b
1 -induction.

Suppose now that we have established the solution set to the factorized instance ΘL,
{X → ÄL}, and assume that {X → Ä}/Σ ⊊ {X → ÄL}. We will further proceed with
iterative steps of the algorithm, the first iteration (see Subsection 4.2). We arbitrarily
choose a constraint EX (i, j) and replace it with all weaker constraints without dummy
variables, making the initial instance weaker. It can be done either by adding some edges
to the relation Eij

Ä (note that new edges have to be preserved by WNU operation Ω) or by
removing the edge (i, j) from X (when the only relation containing Eij

Ä is the full relation
on Di × Dj). Without loss of generality, suppose that we start with X . We prove the
following theorem by induction on the number of edges removed from X . The process
of removing can be interrupted by modifications of Ä as well, but since this interruption
happens only the constant number of times (the number of edges we can add to Ä is a
constant), we can consider the constant number of separate inductions as one from start
to the end.

Theorem 13. Consider two CSP instances, the initial instance Θ = (X , Ä) and the
factorized instance ΘL = (X , ÄL), and suppose that the solution set to the initial instance
factorized by congruences is a proper subset of the solution set to the factorized instance,
i.e. {X → Ä}/Σ ⊊ {X → ÄL}.

Then V 1 proves that there exists a subsequence of instance digraphs X = X0, ...,Xt

(and a subsequence of target digraphs with domains Ä = Ä0, ..., Äs), where t ≤ n(n − 1)
is the number of edges removed from X , {Xt → Äs}/Σ ̸= {X → ÄL}, and if one removes
any other edge from Xt, every solution to ΘL will be a solution to {Xt+1 → Äs}/Σ.

Proof. Since {X → Ä}/Σ ⊊ {X → ÄL}, there is some point (a1, ..., ak) in free variables
y1, ..., yk such that ϕ(a1, ..., ak) is a solution to ΘL, but if we restrict domains D0, ..., Dn−1
of Θ to congruences blocks corresponding to ϕ(a1, ..., ak), there is no solution to Θ. Thus,
there is some homomorphism HL from X to ÄL such that for any well-defined map H from
X to Ä, where every xi is mapped to the corresponding domain Di and HL = H ◦ Hc,
there exists an edge EX (i1, i2) in X that failed to be mapped into an edge in Ä. The
theory V 1 can count the number of elements in every set. Denote by q = #EX the number
of edges in X , q ≤ n2. Consider the following formula θ(t),

θ(t) =def ∃HL < ⟨n, ⟨n, l⟩⟩,MAP (VX , n, VÄL
, ⟨n, l⟩, HL)∧

∧(∀i < n,w < ⟨n, l⟩, HL(i) = w → ∃a < l, w = ⟨i, a⟩ ∧Di/σi(a))∧
∧∀i1, i2 < n,∀w1, w2 < ⟨n, l⟩

(EX (i1, i2) ∧HL(i1) = w1 ∧HL(i2) = w2 → EÄL
(w1, w2))

∧
∀i, j < n, EXt(i, j)→ EX (i, j) ∧ (q − t) ≤ #EXt(i, j)∧

∧∀u, v < ⟨n, l⟩, EÄ(u, v)→ EÄs
(u, v)

∧
MAP (VX , n, VÄ, ⟨n, l⟩, H) ∧ ∀i < n,w < ⟨n, l⟩

H(i) = w → ∃a < l, w = ⟨i, a⟩ ∧Di(a)
∧

∀i < n, v < ⟨n, l⟩, HL(i) = v ←→ ∃u < ⟨n, l⟩(H(i) = u ∧Hc(u) = v)
=⇒
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∃i1, i2 < n,∃w1, w2 < ⟨n, l⟩, ¬(EXt(i1, i2) ∧H(i1) = w1 ∧H(i2) = w2 →
→ EÄs

(w1, w2)).

The first part of the formula expresses that there is a homomorphism HL from X
to ÄL. The second part formalizes that the input digraph Xt is constructed from X by
removing at least t edges (and the target digraph Äs is constructed from Ä by adding some
edges). The third and fourth parts say that there is a well-defined map H from VX to
VÄ satisfying all restrictions on domains and such that HL is a composition of H and the
canonical homomorphism Hc. And the last part expresses that if all previous conditions
are true, then H cannot be a homomorphism from Xt to Äs.

In the formula θ(t) as fixed parameters we use X = (VX , EX ), q = #EX , the target
digraph with domains Ä = (VÄ, EÄ), VÄ < ⟨n, l⟩ and #EÄ < ⟨n, l⟩2, the factorized
digraph with domains ÄL = (VÄL

, EÄL
) and the canonical homomorphism Hc. Induction

goes on variables t and the instance digraph Xt = (VX , EXt) such that (q − t) = #EXt .
Finally, witnesses in Σ1,b

1 -induction corresponding to t are the target digraph with domains
Äs = (VÄs

, EÄs
) and the map H from VX to VÄ.

By assumption, the formula θ(t) is true for t = 0. We also know that it is false for
t = q since for all i1, i2 < n there is ¬EXt(i1, i2). Since θ(t) is Σ1,b

1 -formula, we can use
the Number maximization axiom:

∀H ≤ ⟨n, ⟨n, l⟩⟩, ∀Äs,
[︁
θ(0)→ ∃q′ ≤ q(θ(q′) ∧ ¬∃q′′ ≤ q(q′ < q′′ ∧ θ(q′′)))

]︁
.

This completes the proof.

Lemma 14. Consider two CSP instances, the initial instance Θ = (X , Ä) and the instance
Θt,s = (Xt, Äs), where t ≤ n(n−1) is the number of edges removed from the initial digraph
X and s ≤ ⟨n, l⟩2 is the number of edges added to the target digraph Ä. V 1 proves that
instance Θ has a solution only if Θt,s has a solution.

Proof. Suppose that there is a solution to the instance Θ, a homomorphism H, and the
instance Θt,s is constructed from Θ by removing t arbitrary edges from X and adding some
s edges to Ä. Then it is straightforward to check that H is also a solution to Θt,s.

For further iterations of Zhuk’s algorithm, we will prove the following theorem.

Theorem 14. Consider two CSP instances, the initial instance Θ = (X , Ä) and the
instance Θt,s = (Xt, Äs), where t ≤ n(n − 1) is the number of edges removed from the
initial digraph X and s ≤ ⟨n, l⟩2 is the number of edges added to the target digraph with
domains Ä. Suppose that the solution set to the initial instance factorized by congruences
is a proper subset of the intersection of the solution set to the instance Θt,s factorized by
congruences and the solution set to the factorized instance ΘL, i.e. {X → Ä}/Σ ⊊ {Xt →
Äs}/Σ ∩ {X → ÄL}.

Then V 1 proves that there exists a subsequence of instance digraphs X = X0, ...,Xr (and
a subsequence of target digraphs with domains Ä = Ä0, ..., Äf ), where r ≤ n(n− 1) is the
number of edges removed from X such that {Xr → Äf}/Σ ̸= {Xt → Äs}/Σ ∩ {X → ÄL}
and if one removes any other edge from Xr, every solution to {Xt → Äs}/Σ ∩ {X → ÄL}
will be a solution to {Xr+1 → Äf}/Σ.

Proof. The proof is analogous to the proof of Theorem 13. Let us define a slightly modified
formula θ′(r). We now consider two homomorphisms, HL from X to ÄL, and Ht,s from
Xt to Äs such that HL is a composition of Ht,s and canonical homomorphism Hc (it is
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equivalent to the condition that solutions to both instances are in {Xt → Äs}/Σ ∩ {X →
ÄL}).

θ(r) =def ∃HL < ⟨n, ⟨n, l⟩⟩,MAP (VX , n, VÄL
, ⟨n, l⟩, HL)∧

∧(∀i < n,w < ⟨n, l⟩, HL(i) = w → ∃a < l, w = ⟨i, a⟩ ∧Di/σi(a))∧
∧∀i1, i2 < n,∀w1, w2 < ⟨n, l⟩,

(EX (i1, i2) ∧HL(i1) = w1 ∧HL(i2) = w2 → EÄL
(w1, w2))

∧
∃Ht,s < ⟨n, ⟨n, l⟩⟩

(︁
MAP (VXt , n, VÄs

, ⟨n, l⟩, Ht,s)∧
∧(∀i < n,w < ⟨n, l⟩ Ht,s(i) = w → ∃a < k,w = ⟨i, a⟩ ∧Di(a))∧

∧∀i1, i2 < n,∀w1, w2 < ⟨n, l⟩
(EXt(i1, i2) ∧Ht,s(i1) = w1 ∧Ht,s(i2) = w2 → EÄs

(w1, w2))
∧

∀i < n, v < ⟨n, l⟩HL(i) = v ←→ ∃u < ⟨n, k⟩(Ht,s(i) = u ∧Hc(u) = v)
∧

∀i, j < n EXr (i, j)→ EX (i, j) ∧ (q − r) ≤ #EXr (i, j)∧
∧∀u, v < ⟨n, l⟩ EÄ(u, v)→ EÄf

(u, v)

∧
MAP (VX , n, VÄ, ⟨n, l⟩, H) ∧ ∀i < n,w < ⟨n, l⟩

H(i) = w → ∃a < l, w = ⟨i, a⟩ ∧Di(a)
∧

∀i < n, v < ⟨n, l⟩ZL(i) = v ←→ ∃u < ⟨n, l⟩(H(i) = u ∧Hc(u) = v)
=⇒

∃i1, i2 < n,∃w1, w2 < ⟨n, l⟩ ¬(EXr (i1, i2) ∧H(i1) = w1 ∧H(i2) = w2

→ EÄf
(w1, w2)).

In formula θ′(r) as fixed parameters we use parameters similar to parameters in the
formula θ(t), but add here Xt = (VX , EXt), q − t = #EXt and As = (VAs , EAs), s < ⟨n, l⟩2
as well. Induction goes on variable r and the instance digraph Xr = (VX , EXr ) such
that (q − r) ≤ #EXr . Witnesses to the induction are the target digraph with domains
Äf = (VÄf

, EÄf
) and the map H from VX to VÄ.

5.6 The main result

Theorem 15 (The main result). For any fixed relational structure A which corresponds
to an algebra with WNU operation and therefore leads to p-time solvable CSP, the theory
V 1

A proves the soundness of Zhuk’s algorithm.

Proof. Consider any unsatisfiable CSP instance Θ = (X , Ä). It is sufficient to show that
in the computation W = (W1,W2, ...,Wk) of the algorithm on X , for all possible types of
algorithmic modifications the theory V 1

A proves that Wi has a solution only if Wi+1 has a
solution.

In Section 5.4 we have shown that V 1 proves that:

• the instance Θ has a solution only if it has a solution after cycle-consistency reduction
(Lemma 6);
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• the instance Θ has a solution only if it has a solution after irreducible reduction
(Lemma 11);

• the instance Θ has a solution only if it has a solution after the weaker instance
reduction (Lemma 12).

The three universal algebra axiom schemes BAA-axioms, CRA-axioms, and PCA-
axioms defined in Section 5.2 by ∀Σ1,b

2 -formulas validate universal algebra reductions of
any domain Di to a binary absorbing subuniverse, central subuniverse or to an arbitrary
equivalence class of polynomially complete congruence on Di.

Finally, in Section 5.5 we have shown that V 1 validates:

• factorization of the instance by minimal linear congruences (Theorem 12);

• Gaussian elimination (Lemma 13);

• decreasing of the solution set to the factorized instance (Theorems 13, 14, Lemma
14).

This completes the proof.

The result implies that tautologies ¬HOM(X ,A) for negative instances of any fixed
p-time CSP have short proofs in any propositional proof system simulating Extended
Resolution and a theory that proves the three universal algebra axioms.

6 Conclusion notes
In the paper we investigate the proof complexity of general CSP. We proved the soundness
of Zhuk’s algorithm in a new theory of bounded arithmetic defined by augmenting the two-
sorted theory V 1 with three universal algebra axioms. These axioms are designed to verify
universal algebra reductions, while the soundness of consistency reductions and the linear
case of the algorithm is proved directly in the theory V 1.

Consistency reductions open the algorithm and represent its most technical part. For-
malization of the consistency reductions uses iteratively defined sets and Σ1,b

1 -induction.
The linear case is the last step of Zhuk’s algorithm after all reductions of separate domains.
However, it does not lead to linear equations straightforwardly: structures in the linear
case have to be factorized first. The proof of the soundness of the linear case is based on
the formalization of Gaussian elimination and linear factorization and uses Σ1,b

1 -induction.
In contrast, universal algebra axioms stand apart. Despite the fact that they can

be defined by ∀Σ1,b
2 -formulas, their proof in a theory of bounded arithmetic requires the

formalization of advanced notions from universal algebra and this will be a subject of
further research.

Theorem 5 allows one to consider constraint languages with at most binary relations
instead of general CSP. We tested how to utilize the framework and strategy of getting
short propositional proofs using bounded arithmetic in [14] on an elementary example
of undirected graphs (the H-coloring problem). In that case, the theory of bounded
arithmetic corresponds to a weak proof system R∗(log), a mild extension of resolution.

Every theory of bounded arithmetic corresponds to some propositional proof system.
The theory V 1 stands for polynomial time reasoning and corresponds to the Extended
Frege EF proof system (equivalently Extended resolution ER). Our working hypothesis is
that the soundness of Zhuk’s algorithm can be established utilizing only Σ1,b

1 -induction.
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If it is true, then statements ¬HOM(X , Ä) for unsatisfiable instances of polynomial time
CSP(A) will have short propositional proofs in EF. The next step in our program is to
investigate the boundaries of the theory V 1 in formalizing of universal algebra notions.
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